diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dptsvx.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dptsvx.c')
-rw-r--r-- | contrib/libs/clapack/dptsvx.c | 283 |
1 files changed, 283 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dptsvx.c b/contrib/libs/clapack/dptsvx.c new file mode 100644 index 0000000000..ba37b180a7 --- /dev/null +++ b/contrib/libs/clapack/dptsvx.c @@ -0,0 +1,283 @@ +/* dptsvx.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; + +/* Subroutine */ int dptsvx_(char *fact, integer *n, integer *nrhs, + doublereal *d__, doublereal *e, doublereal *df, doublereal *ef, + doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal * + rcond, doublereal *ferr, doublereal *berr, doublereal *work, integer * + info) +{ + /* System generated locals */ + integer b_dim1, b_offset, x_dim1, x_offset, i__1; + + /* Local variables */ + extern logical lsame_(char *, char *); + doublereal anorm; + extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, + doublereal *, integer *); + extern doublereal dlamch_(char *); + logical nofact; + extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, + doublereal *, integer *, doublereal *, integer *), + xerbla_(char *, integer *); + extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *); + extern /* Subroutine */ int dptcon_(integer *, doublereal *, doublereal *, + doublereal *, doublereal *, doublereal *, integer *), dptrfs_( + integer *, integer *, doublereal *, doublereal *, doublereal *, + doublereal *, doublereal *, integer *, doublereal *, integer *, + doublereal *, doublereal *, doublereal *, integer *), dpttrf_( + integer *, doublereal *, doublereal *, integer *), dpttrs_( + integer *, integer *, doublereal *, doublereal *, doublereal *, + integer *, integer *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DPTSVX uses the factorization A = L*D*L**T to compute the solution */ +/* to a real system of linear equations A*X = B, where A is an N-by-N */ +/* symmetric positive definite tridiagonal matrix and X and B are */ +/* N-by-NRHS matrices. */ + +/* Error bounds on the solution and a condition estimate are also */ +/* provided. */ + +/* Description */ +/* =========== */ + +/* The following steps are performed: */ + +/* 1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L */ +/* is a unit lower bidiagonal matrix and D is diagonal. The */ +/* factorization can also be regarded as having the form */ +/* A = U**T*D*U. */ + +/* 2. If the leading i-by-i principal minor is not positive definite, */ +/* then the routine returns with INFO = i. Otherwise, the factored */ +/* form of A is used to estimate the condition number of the matrix */ +/* A. If the reciprocal of the condition number is less than machine */ +/* precision, INFO = N+1 is returned as a warning, but the routine */ +/* still goes on to solve for X and compute error bounds as */ +/* described below. */ + +/* 3. The system of equations is solved for X using the factored form */ +/* of A. */ + +/* 4. Iterative refinement is applied to improve the computed solution */ +/* matrix and calculate error bounds and backward error estimates */ +/* for it. */ + +/* Arguments */ +/* ========= */ + +/* FACT (input) CHARACTER*1 */ +/* Specifies whether or not the factored form of A has been */ +/* supplied on entry. */ +/* = 'F': On entry, DF and EF contain the factored form of A. */ +/* D, E, DF, and EF will not be modified. */ +/* = 'N': The matrix A will be copied to DF and EF and */ +/* factored. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* NRHS (input) INTEGER */ +/* The number of right hand sides, i.e., the number of columns */ +/* of the matrices B and X. NRHS >= 0. */ + +/* D (input) DOUBLE PRECISION array, dimension (N) */ +/* The n diagonal elements of the tridiagonal matrix A. */ + +/* E (input) DOUBLE PRECISION array, dimension (N-1) */ +/* The (n-1) subdiagonal elements of the tridiagonal matrix A. */ + +/* DF (input or output) DOUBLE PRECISION array, dimension (N) */ +/* If FACT = 'F', then DF is an input argument and on entry */ +/* contains the n diagonal elements of the diagonal matrix D */ +/* from the L*D*L**T factorization of A. */ +/* If FACT = 'N', then DF is an output argument and on exit */ +/* contains the n diagonal elements of the diagonal matrix D */ +/* from the L*D*L**T factorization of A. */ + +/* EF (input or output) DOUBLE PRECISION array, dimension (N-1) */ +/* If FACT = 'F', then EF is an input argument and on entry */ +/* contains the (n-1) subdiagonal elements of the unit */ +/* bidiagonal factor L from the L*D*L**T factorization of A. */ +/* If FACT = 'N', then EF is an output argument and on exit */ +/* contains the (n-1) subdiagonal elements of the unit */ +/* bidiagonal factor L from the L*D*L**T factorization of A. */ + +/* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */ +/* The N-by-NRHS right hand side matrix B. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,N). */ + +/* X (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */ +/* If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X. */ + +/* LDX (input) INTEGER */ +/* The leading dimension of the array X. LDX >= max(1,N). */ + +/* RCOND (output) DOUBLE PRECISION */ +/* The reciprocal condition number of the matrix A. If RCOND */ +/* is less than the machine precision (in particular, if */ +/* RCOND = 0), the matrix is singular to working precision. */ +/* This condition is indicated by a return code of INFO > 0. */ + +/* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */ +/* The forward error bound for each solution vector */ +/* X(j) (the j-th column of the solution matrix X). */ +/* If XTRUE is the true solution corresponding to X(j), FERR(j) */ +/* is an estimated upper bound for the magnitude of the largest */ +/* element in (X(j) - XTRUE) divided by the magnitude of the */ +/* largest element in X(j). */ + +/* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */ +/* The componentwise relative backward error of each solution */ +/* vector X(j) (i.e., the smallest relative change in any */ +/* element of A or B that makes X(j) an exact solution). */ + +/* WORK (workspace) DOUBLE PRECISION array, dimension (2*N) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: if INFO = i, and i is */ +/* <= N: the leading minor of order i of A is */ +/* not positive definite, so the factorization */ +/* could not be completed, and the solution has not */ +/* been computed. RCOND = 0 is returned. */ +/* = N+1: U is nonsingular, but RCOND is less than machine */ +/* precision, meaning that the matrix is singular */ +/* to working precision. Nevertheless, the */ +/* solution and error bounds are computed because */ +/* there are a number of situations where the */ +/* computed solution can be more accurate than the */ +/* value of RCOND would suggest. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + --d__; + --e; + --df; + --ef; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + x_dim1 = *ldx; + x_offset = 1 + x_dim1; + x -= x_offset; + --ferr; + --berr; + --work; + + /* Function Body */ + *info = 0; + nofact = lsame_(fact, "N"); + if (! nofact && ! lsame_(fact, "F")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*nrhs < 0) { + *info = -3; + } else if (*ldb < max(1,*n)) { + *info = -9; + } else if (*ldx < max(1,*n)) { + *info = -11; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("DPTSVX", &i__1); + return 0; + } + + if (nofact) { + +/* Compute the L*D*L' (or U'*D*U) factorization of A. */ + + dcopy_(n, &d__[1], &c__1, &df[1], &c__1); + if (*n > 1) { + i__1 = *n - 1; + dcopy_(&i__1, &e[1], &c__1, &ef[1], &c__1); + } + dpttrf_(n, &df[1], &ef[1], info); + +/* Return if INFO is non-zero. */ + + if (*info > 0) { + *rcond = 0.; + return 0; + } + } + +/* Compute the norm of the matrix A. */ + + anorm = dlanst_("1", n, &d__[1], &e[1]); + +/* Compute the reciprocal of the condition number of A. */ + + dptcon_(n, &df[1], &ef[1], &anorm, rcond, &work[1], info); + +/* Compute the solution vectors X. */ + + dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx); + dpttrs_(n, nrhs, &df[1], &ef[1], &x[x_offset], ldx, info); + +/* Use iterative refinement to improve the computed solutions and */ +/* compute error bounds and backward error estimates for them. */ + + dptrfs_(n, nrhs, &d__[1], &e[1], &df[1], &ef[1], &b[b_offset], ldb, &x[ + x_offset], ldx, &ferr[1], &berr[1], &work[1], info); + +/* Set INFO = N+1 if the matrix is singular to working precision. */ + + if (*rcond < dlamch_("Epsilon")) { + *info = *n + 1; + } + + return 0; + +/* End of DPTSVX */ + +} /* dptsvx_ */ |