aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dormlq.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dormlq.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dormlq.c')
-rw-r--r--contrib/libs/clapack/dormlq.c335
1 files changed, 335 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dormlq.c b/contrib/libs/clapack/dormlq.c
new file mode 100644
index 0000000000..bcc1cc4700
--- /dev/null
+++ b/contrib/libs/clapack/dormlq.c
@@ -0,0 +1,335 @@
+/* dormlq.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c_n1 = -1;
+static integer c__2 = 2;
+static integer c__65 = 65;
+
+/* Subroutine */ int dormlq_(char *side, char *trans, integer *m, integer *n,
+ integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
+ c__, integer *ldc, doublereal *work, integer *lwork, integer *info)
+{
+ /* System generated locals */
+ address a__1[2];
+ integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4,
+ i__5;
+ char ch__1[3];
+ ch__1[2] = 0;
+
+ /* Builtin functions */
+ /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
+
+ /* Local variables */
+ integer i__;
+ doublereal t[4160] /* was [65][64] */;
+ integer i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw, iws;
+ logical left;
+ extern logical lsame_(char *, char *);
+ integer nbmin, iinfo;
+ extern /* Subroutine */ int dorml2_(char *, char *, integer *, integer *,
+ integer *, doublereal *, integer *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *), dlarfb_(char
+ *, char *, char *, char *, integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal
+ *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ logical notran;
+ integer ldwork;
+ char transt[1];
+ integer lwkopt;
+ logical lquery;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DORMLQ overwrites the general real M-by-N matrix C with */
+
+/* SIDE = 'L' SIDE = 'R' */
+/* TRANS = 'N': Q * C C * Q */
+/* TRANS = 'T': Q**T * C C * Q**T */
+
+/* where Q is a real orthogonal matrix defined as the product of k */
+/* elementary reflectors */
+
+/* Q = H(k) . . . H(2) H(1) */
+
+/* as returned by DGELQF. Q is of order M if SIDE = 'L' and of order N */
+/* if SIDE = 'R'. */
+
+/* Arguments */
+/* ========= */
+
+/* SIDE (input) CHARACTER*1 */
+/* = 'L': apply Q or Q**T from the Left; */
+/* = 'R': apply Q or Q**T from the Right. */
+
+/* TRANS (input) CHARACTER*1 */
+/* = 'N': No transpose, apply Q; */
+/* = 'T': Transpose, apply Q**T. */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix C. M >= 0. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrix C. N >= 0. */
+
+/* K (input) INTEGER */
+/* The number of elementary reflectors whose product defines */
+/* the matrix Q. */
+/* If SIDE = 'L', M >= K >= 0; */
+/* if SIDE = 'R', N >= K >= 0. */
+
+/* A (input) DOUBLE PRECISION array, dimension */
+/* (LDA,M) if SIDE = 'L', */
+/* (LDA,N) if SIDE = 'R' */
+/* The i-th row must contain the vector which defines the */
+/* elementary reflector H(i), for i = 1,2,...,k, as returned by */
+/* DGELQF in the first k rows of its array argument A. */
+/* A is modified by the routine but restored on exit. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,K). */
+
+/* TAU (input) DOUBLE PRECISION array, dimension (K) */
+/* TAU(i) must contain the scalar factor of the elementary */
+/* reflector H(i), as returned by DGELQF. */
+
+/* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) */
+/* On entry, the M-by-N matrix C. */
+/* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. */
+
+/* LDC (input) INTEGER */
+/* The leading dimension of the array C. LDC >= max(1,M). */
+
+/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. */
+/* If SIDE = 'L', LWORK >= max(1,N); */
+/* if SIDE = 'R', LWORK >= max(1,M). */
+/* For optimum performance LWORK >= N*NB if SIDE = 'L', and */
+/* LWORK >= M*NB if SIDE = 'R', where NB is the optimal */
+/* blocksize. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input arguments */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --tau;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ left = lsame_(side, "L");
+ notran = lsame_(trans, "N");
+ lquery = *lwork == -1;
+
+/* NQ is the order of Q and NW is the minimum dimension of WORK */
+
+ if (left) {
+ nq = *m;
+ nw = *n;
+ } else {
+ nq = *n;
+ nw = *m;
+ }
+ if (! left && ! lsame_(side, "R")) {
+ *info = -1;
+ } else if (! notran && ! lsame_(trans, "T")) {
+ *info = -2;
+ } else if (*m < 0) {
+ *info = -3;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*k < 0 || *k > nq) {
+ *info = -5;
+ } else if (*lda < max(1,*k)) {
+ *info = -7;
+ } else if (*ldc < max(1,*m)) {
+ *info = -10;
+ } else if (*lwork < max(1,nw) && ! lquery) {
+ *info = -12;
+ }
+
+ if (*info == 0) {
+
+/* Determine the block size. NB may be at most NBMAX, where NBMAX */
+/* is used to define the local array T. */
+
+/* Computing MIN */
+/* Writing concatenation */
+ i__3[0] = 1, a__1[0] = side;
+ i__3[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
+ i__1 = 64, i__2 = ilaenv_(&c__1, "DORMLQ", ch__1, m, n, k, &c_n1);
+ nb = min(i__1,i__2);
+ lwkopt = max(1,nw) * nb;
+ work[1] = (doublereal) lwkopt;
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DORMLQ", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0 || *n == 0 || *k == 0) {
+ work[1] = 1.;
+ return 0;
+ }
+
+ nbmin = 2;
+ ldwork = nw;
+ if (nb > 1 && nb < *k) {
+ iws = nw * nb;
+ if (*lwork < iws) {
+ nb = *lwork / ldwork;
+/* Computing MAX */
+/* Writing concatenation */
+ i__3[0] = 1, a__1[0] = side;
+ i__3[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
+ i__1 = 2, i__2 = ilaenv_(&c__2, "DORMLQ", ch__1, m, n, k, &c_n1);
+ nbmin = max(i__1,i__2);
+ }
+ } else {
+ iws = nw;
+ }
+
+ if (nb < nbmin || nb >= *k) {
+
+/* Use unblocked code */
+
+ dorml2_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
+ c_offset], ldc, &work[1], &iinfo);
+ } else {
+
+/* Use blocked code */
+
+ if (left && notran || ! left && ! notran) {
+ i1 = 1;
+ i2 = *k;
+ i3 = nb;
+ } else {
+ i1 = (*k - 1) / nb * nb + 1;
+ i2 = 1;
+ i3 = -nb;
+ }
+
+ if (left) {
+ ni = *n;
+ jc = 1;
+ } else {
+ mi = *m;
+ ic = 1;
+ }
+
+ if (notran) {
+ *(unsigned char *)transt = 'T';
+ } else {
+ *(unsigned char *)transt = 'N';
+ }
+
+ i__1 = i2;
+ i__2 = i3;
+ for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+/* Computing MIN */
+ i__4 = nb, i__5 = *k - i__ + 1;
+ ib = min(i__4,i__5);
+
+/* Form the triangular factor of the block reflector */
+/* H = H(i) H(i+1) . . . H(i+ib-1) */
+
+ i__4 = nq - i__ + 1;
+ dlarft_("Forward", "Rowwise", &i__4, &ib, &a[i__ + i__ * a_dim1],
+ lda, &tau[i__], t, &c__65);
+ if (left) {
+
+/* H or H' is applied to C(i:m,1:n) */
+
+ mi = *m - i__ + 1;
+ ic = i__;
+ } else {
+
+/* H or H' is applied to C(1:m,i:n) */
+
+ ni = *n - i__ + 1;
+ jc = i__;
+ }
+
+/* Apply H or H' */
+
+ dlarfb_(side, transt, "Forward", "Rowwise", &mi, &ni, &ib, &a[i__
+ + i__ * a_dim1], lda, t, &c__65, &c__[ic + jc * c_dim1],
+ ldc, &work[1], &ldwork);
+/* L10: */
+ }
+ }
+ work[1] = (doublereal) lwkopt;
+ return 0;
+
+/* End of DORMLQ */
+
+} /* dormlq_ */