diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dlatrd.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dlatrd.c')
-rw-r--r-- | contrib/libs/clapack/dlatrd.c | 355 |
1 files changed, 355 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dlatrd.c b/contrib/libs/clapack/dlatrd.c new file mode 100644 index 0000000000..6d07750611 --- /dev/null +++ b/contrib/libs/clapack/dlatrd.c @@ -0,0 +1,355 @@ +/* dlatrd.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static doublereal c_b5 = -1.; +static doublereal c_b6 = 1.; +static integer c__1 = 1; +static doublereal c_b16 = 0.; + +/* Subroutine */ int dlatrd_(char *uplo, integer *n, integer *nb, doublereal * + a, integer *lda, doublereal *e, doublereal *tau, doublereal *w, + integer *ldw) +{ + /* System generated locals */ + integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3; + + /* Local variables */ + integer i__, iw; + extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, + integer *); + doublereal alpha; + extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, + integer *); + extern logical lsame_(char *, char *); + extern /* Subroutine */ int dgemv_(char *, integer *, integer *, + doublereal *, doublereal *, integer *, doublereal *, integer *, + doublereal *, doublereal *, integer *), daxpy_(integer *, + doublereal *, doublereal *, integer *, doublereal *, integer *), + dsymv_(char *, integer *, doublereal *, doublereal *, integer *, + doublereal *, integer *, doublereal *, doublereal *, integer *), dlarfg_(integer *, doublereal *, doublereal *, integer *, + doublereal *); + + +/* -- LAPACK auxiliary routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DLATRD reduces NB rows and columns of a real symmetric matrix A to */ +/* symmetric tridiagonal form by an orthogonal similarity */ +/* transformation Q' * A * Q, and returns the matrices V and W which are */ +/* needed to apply the transformation to the unreduced part of A. */ + +/* If UPLO = 'U', DLATRD reduces the last NB rows and columns of a */ +/* matrix, of which the upper triangle is supplied; */ +/* if UPLO = 'L', DLATRD reduces the first NB rows and columns of a */ +/* matrix, of which the lower triangle is supplied. */ + +/* This is an auxiliary routine called by DSYTRD. */ + +/* Arguments */ +/* ========= */ + +/* UPLO (input) CHARACTER*1 */ +/* Specifies whether the upper or lower triangular part of the */ +/* symmetric matrix A is stored: */ +/* = 'U': Upper triangular */ +/* = 'L': Lower triangular */ + +/* N (input) INTEGER */ +/* The order of the matrix A. */ + +/* NB (input) INTEGER */ +/* The number of rows and columns to be reduced. */ + +/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ +/* On entry, the symmetric matrix A. If UPLO = 'U', the leading */ +/* n-by-n upper triangular part of A contains the upper */ +/* triangular part of the matrix A, and the strictly lower */ +/* triangular part of A is not referenced. If UPLO = 'L', the */ +/* leading n-by-n lower triangular part of A contains the lower */ +/* triangular part of the matrix A, and the strictly upper */ +/* triangular part of A is not referenced. */ +/* On exit: */ +/* if UPLO = 'U', the last NB columns have been reduced to */ +/* tridiagonal form, with the diagonal elements overwriting */ +/* the diagonal elements of A; the elements above the diagonal */ +/* with the array TAU, represent the orthogonal matrix Q as a */ +/* product of elementary reflectors; */ +/* if UPLO = 'L', the first NB columns have been reduced to */ +/* tridiagonal form, with the diagonal elements overwriting */ +/* the diagonal elements of A; the elements below the diagonal */ +/* with the array TAU, represent the orthogonal matrix Q as a */ +/* product of elementary reflectors. */ +/* See Further Details. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= (1,N). */ + +/* E (output) DOUBLE PRECISION array, dimension (N-1) */ +/* If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal */ +/* elements of the last NB columns of the reduced matrix; */ +/* if UPLO = 'L', E(1:nb) contains the subdiagonal elements of */ +/* the first NB columns of the reduced matrix. */ + +/* TAU (output) DOUBLE PRECISION array, dimension (N-1) */ +/* The scalar factors of the elementary reflectors, stored in */ +/* TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'. */ +/* See Further Details. */ + +/* W (output) DOUBLE PRECISION array, dimension (LDW,NB) */ +/* The n-by-nb matrix W required to update the unreduced part */ +/* of A. */ + +/* LDW (input) INTEGER */ +/* The leading dimension of the array W. LDW >= max(1,N). */ + +/* Further Details */ +/* =============== */ + +/* If UPLO = 'U', the matrix Q is represented as a product of elementary */ +/* reflectors */ + +/* Q = H(n) H(n-1) . . . H(n-nb+1). */ + +/* Each H(i) has the form */ + +/* H(i) = I - tau * v * v' */ + +/* where tau is a real scalar, and v is a real vector with */ +/* v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), */ +/* and tau in TAU(i-1). */ + +/* If UPLO = 'L', the matrix Q is represented as a product of elementary */ +/* reflectors */ + +/* Q = H(1) H(2) . . . H(nb). */ + +/* Each H(i) has the form */ + +/* H(i) = I - tau * v * v' */ + +/* where tau is a real scalar, and v is a real vector with */ +/* v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), */ +/* and tau in TAU(i). */ + +/* The elements of the vectors v together form the n-by-nb matrix V */ +/* which is needed, with W, to apply the transformation to the unreduced */ +/* part of the matrix, using a symmetric rank-2k update of the form: */ +/* A := A - V*W' - W*V'. */ + +/* The contents of A on exit are illustrated by the following examples */ +/* with n = 5 and nb = 2: */ + +/* if UPLO = 'U': if UPLO = 'L': */ + +/* ( a a a v4 v5 ) ( d ) */ +/* ( a a v4 v5 ) ( 1 d ) */ +/* ( a 1 v5 ) ( v1 1 a ) */ +/* ( d 1 ) ( v1 v2 a a ) */ +/* ( d ) ( v1 v2 a a a ) */ + +/* where d denotes a diagonal element of the reduced matrix, a denotes */ +/* an element of the original matrix that is unchanged, and vi denotes */ +/* an element of the vector defining H(i). */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Quick return if possible */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --e; + --tau; + w_dim1 = *ldw; + w_offset = 1 + w_dim1; + w -= w_offset; + + /* Function Body */ + if (*n <= 0) { + return 0; + } + + if (lsame_(uplo, "U")) { + +/* Reduce last NB columns of upper triangle */ + + i__1 = *n - *nb + 1; + for (i__ = *n; i__ >= i__1; --i__) { + iw = i__ - *n + *nb; + if (i__ < *n) { + +/* Update A(1:i,i) */ + + i__2 = *n - i__; + dgemv_("No transpose", &i__, &i__2, &c_b5, &a[(i__ + 1) * + a_dim1 + 1], lda, &w[i__ + (iw + 1) * w_dim1], ldw, & + c_b6, &a[i__ * a_dim1 + 1], &c__1); + i__2 = *n - i__; + dgemv_("No transpose", &i__, &i__2, &c_b5, &w[(iw + 1) * + w_dim1 + 1], ldw, &a[i__ + (i__ + 1) * a_dim1], lda, & + c_b6, &a[i__ * a_dim1 + 1], &c__1); + } + if (i__ > 1) { + +/* Generate elementary reflector H(i) to annihilate */ +/* A(1:i-2,i) */ + + i__2 = i__ - 1; + dlarfg_(&i__2, &a[i__ - 1 + i__ * a_dim1], &a[i__ * a_dim1 + + 1], &c__1, &tau[i__ - 1]); + e[i__ - 1] = a[i__ - 1 + i__ * a_dim1]; + a[i__ - 1 + i__ * a_dim1] = 1.; + +/* Compute W(1:i-1,i) */ + + i__2 = i__ - 1; + dsymv_("Upper", &i__2, &c_b6, &a[a_offset], lda, &a[i__ * + a_dim1 + 1], &c__1, &c_b16, &w[iw * w_dim1 + 1], & + c__1); + if (i__ < *n) { + i__2 = i__ - 1; + i__3 = *n - i__; + dgemv_("Transpose", &i__2, &i__3, &c_b6, &w[(iw + 1) * + w_dim1 + 1], ldw, &a[i__ * a_dim1 + 1], &c__1, & + c_b16, &w[i__ + 1 + iw * w_dim1], &c__1); + i__2 = i__ - 1; + i__3 = *n - i__; + dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) * + a_dim1 + 1], lda, &w[i__ + 1 + iw * w_dim1], & + c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1); + i__2 = i__ - 1; + i__3 = *n - i__; + dgemv_("Transpose", &i__2, &i__3, &c_b6, &a[(i__ + 1) * + a_dim1 + 1], lda, &a[i__ * a_dim1 + 1], &c__1, & + c_b16, &w[i__ + 1 + iw * w_dim1], &c__1); + i__2 = i__ - 1; + i__3 = *n - i__; + dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[(iw + 1) * + w_dim1 + 1], ldw, &w[i__ + 1 + iw * w_dim1], & + c__1, &c_b6, &w[iw * w_dim1 + 1], &c__1); + } + i__2 = i__ - 1; + dscal_(&i__2, &tau[i__ - 1], &w[iw * w_dim1 + 1], &c__1); + i__2 = i__ - 1; + alpha = tau[i__ - 1] * -.5 * ddot_(&i__2, &w[iw * w_dim1 + 1], + &c__1, &a[i__ * a_dim1 + 1], &c__1); + i__2 = i__ - 1; + daxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &w[iw * + w_dim1 + 1], &c__1); + } + +/* L10: */ + } + } else { + +/* Reduce first NB columns of lower triangle */ + + i__1 = *nb; + for (i__ = 1; i__ <= i__1; ++i__) { + +/* Update A(i:n,i) */ + + i__2 = *n - i__ + 1; + i__3 = i__ - 1; + dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1], lda, + &w[i__ + w_dim1], ldw, &c_b6, &a[i__ + i__ * a_dim1], & + c__1); + i__2 = *n - i__ + 1; + i__3 = i__ - 1; + dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + w_dim1], ldw, + &a[i__ + a_dim1], lda, &c_b6, &a[i__ + i__ * a_dim1], & + c__1); + if (i__ < *n) { + +/* Generate elementary reflector H(i) to annihilate */ +/* A(i+2:n,i) */ + + i__2 = *n - i__; +/* Computing MIN */ + i__3 = i__ + 2; + dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *n)+ + i__ * a_dim1], &c__1, &tau[i__]); + e[i__] = a[i__ + 1 + i__ * a_dim1]; + a[i__ + 1 + i__ * a_dim1] = 1.; + +/* Compute W(i+1:n,i) */ + + i__2 = *n - i__; + dsymv_("Lower", &i__2, &c_b6, &a[i__ + 1 + (i__ + 1) * a_dim1] +, lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[ + i__ + 1 + i__ * w_dim1], &c__1); + i__2 = *n - i__; + i__3 = i__ - 1; + dgemv_("Transpose", &i__2, &i__3, &c_b6, &w[i__ + 1 + w_dim1], + ldw, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[ + i__ * w_dim1 + 1], &c__1); + i__2 = *n - i__; + i__3 = i__ - 1; + dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + + a_dim1], lda, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[ + i__ + 1 + i__ * w_dim1], &c__1); + i__2 = *n - i__; + i__3 = i__ - 1; + dgemv_("Transpose", &i__2, &i__3, &c_b6, &a[i__ + 1 + a_dim1], + lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &w[ + i__ * w_dim1 + 1], &c__1); + i__2 = *n - i__; + i__3 = i__ - 1; + dgemv_("No transpose", &i__2, &i__3, &c_b5, &w[i__ + 1 + + w_dim1], ldw, &w[i__ * w_dim1 + 1], &c__1, &c_b6, &w[ + i__ + 1 + i__ * w_dim1], &c__1); + i__2 = *n - i__; + dscal_(&i__2, &tau[i__], &w[i__ + 1 + i__ * w_dim1], &c__1); + i__2 = *n - i__; + alpha = tau[i__] * -.5 * ddot_(&i__2, &w[i__ + 1 + i__ * + w_dim1], &c__1, &a[i__ + 1 + i__ * a_dim1], &c__1); + i__2 = *n - i__; + daxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &w[ + i__ + 1 + i__ * w_dim1], &c__1); + } + +/* L20: */ + } + } + + return 0; + +/* End of DLATRD */ + +} /* dlatrd_ */ |