diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dlasd3.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dlasd3.c')
-rw-r--r-- | contrib/libs/clapack/dlasd3.c | 452 |
1 files changed, 452 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dlasd3.c b/contrib/libs/clapack/dlasd3.c new file mode 100644 index 0000000000..db8089b8ea --- /dev/null +++ b/contrib/libs/clapack/dlasd3.c @@ -0,0 +1,452 @@ +/* dlasd3.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c__0 = 0; +static doublereal c_b13 = 1.; +static doublereal c_b26 = 0.; + +/* Subroutine */ int dlasd3_(integer *nl, integer *nr, integer *sqre, integer + *k, doublereal *d__, doublereal *q, integer *ldq, doublereal *dsigma, + doublereal *u, integer *ldu, doublereal *u2, integer *ldu2, + doublereal *vt, integer *ldvt, doublereal *vt2, integer *ldvt2, + integer *idxc, integer *ctot, doublereal *z__, integer *info) +{ + /* System generated locals */ + integer q_dim1, q_offset, u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, + vt_offset, vt2_dim1, vt2_offset, i__1, i__2; + doublereal d__1, d__2; + + /* Builtin functions */ + double sqrt(doublereal), d_sign(doublereal *, doublereal *); + + /* Local variables */ + integer i__, j, m, n, jc; + doublereal rho; + integer nlp1, nlp2, nrp1; + doublereal temp; + extern doublereal dnrm2_(integer *, doublereal *, integer *); + extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, + integer *, doublereal *, doublereal *, integer *, doublereal *, + integer *, doublereal *, doublereal *, integer *); + integer ctemp; + extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, + doublereal *, integer *); + integer ktemp; + extern doublereal dlamc3_(doublereal *, doublereal *); + extern /* Subroutine */ int dlasd4_(integer *, integer *, doublereal *, + doublereal *, doublereal *, doublereal *, doublereal *, + doublereal *, integer *), dlascl_(char *, integer *, integer *, + doublereal *, doublereal *, integer *, integer *, doublereal *, + integer *, integer *), dlacpy_(char *, integer *, integer + *, doublereal *, integer *, doublereal *, integer *), + xerbla_(char *, integer *); + + +/* -- LAPACK auxiliary routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DLASD3 finds all the square roots of the roots of the secular */ +/* equation, as defined by the values in D and Z. It makes the */ +/* appropriate calls to DLASD4 and then updates the singular */ +/* vectors by matrix multiplication. */ + +/* This code makes very mild assumptions about floating point */ +/* arithmetic. It will work on machines with a guard digit in */ +/* add/subtract, or on those binary machines without guard digits */ +/* which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */ +/* It could conceivably fail on hexadecimal or decimal machines */ +/* without guard digits, but we know of none. */ + +/* DLASD3 is called from DLASD1. */ + +/* Arguments */ +/* ========= */ + +/* NL (input) INTEGER */ +/* The row dimension of the upper block. NL >= 1. */ + +/* NR (input) INTEGER */ +/* The row dimension of the lower block. NR >= 1. */ + +/* SQRE (input) INTEGER */ +/* = 0: the lower block is an NR-by-NR square matrix. */ +/* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */ + +/* The bidiagonal matrix has N = NL + NR + 1 rows and */ +/* M = N + SQRE >= N columns. */ + +/* K (input) INTEGER */ +/* The size of the secular equation, 1 =< K = < N. */ + +/* D (output) DOUBLE PRECISION array, dimension(K) */ +/* On exit the square roots of the roots of the secular equation, */ +/* in ascending order. */ + +/* Q (workspace) DOUBLE PRECISION array, */ +/* dimension at least (LDQ,K). */ + +/* LDQ (input) INTEGER */ +/* The leading dimension of the array Q. LDQ >= K. */ + +/* DSIGMA (input) DOUBLE PRECISION array, dimension(K) */ +/* The first K elements of this array contain the old roots */ +/* of the deflated updating problem. These are the poles */ +/* of the secular equation. */ + +/* U (output) DOUBLE PRECISION array, dimension (LDU, N) */ +/* The last N - K columns of this matrix contain the deflated */ +/* left singular vectors. */ + +/* LDU (input) INTEGER */ +/* The leading dimension of the array U. LDU >= N. */ + +/* U2 (input/output) DOUBLE PRECISION array, dimension (LDU2, N) */ +/* The first K columns of this matrix contain the non-deflated */ +/* left singular vectors for the split problem. */ + +/* LDU2 (input) INTEGER */ +/* The leading dimension of the array U2. LDU2 >= N. */ + +/* VT (output) DOUBLE PRECISION array, dimension (LDVT, M) */ +/* The last M - K columns of VT' contain the deflated */ +/* right singular vectors. */ + +/* LDVT (input) INTEGER */ +/* The leading dimension of the array VT. LDVT >= N. */ + +/* VT2 (input/output) DOUBLE PRECISION array, dimension (LDVT2, N) */ +/* The first K columns of VT2' contain the non-deflated */ +/* right singular vectors for the split problem. */ + +/* LDVT2 (input) INTEGER */ +/* The leading dimension of the array VT2. LDVT2 >= N. */ + +/* IDXC (input) INTEGER array, dimension ( N ) */ +/* The permutation used to arrange the columns of U (and rows of */ +/* VT) into three groups: the first group contains non-zero */ +/* entries only at and above (or before) NL +1; the second */ +/* contains non-zero entries only at and below (or after) NL+2; */ +/* and the third is dense. The first column of U and the row of */ +/* VT are treated separately, however. */ + +/* The rows of the singular vectors found by DLASD4 */ +/* must be likewise permuted before the matrix multiplies can */ +/* take place. */ + +/* CTOT (input) INTEGER array, dimension ( 4 ) */ +/* A count of the total number of the various types of columns */ +/* in U (or rows in VT), as described in IDXC. The fourth column */ +/* type is any column which has been deflated. */ + +/* Z (input) DOUBLE PRECISION array, dimension (K) */ +/* The first K elements of this array contain the components */ +/* of the deflation-adjusted updating row vector. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit. */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ +/* > 0: if INFO = 1, an singular value did not converge */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* Ming Gu and Huan Ren, Computer Science Division, University of */ +/* California at Berkeley, USA */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + --d__; + q_dim1 = *ldq; + q_offset = 1 + q_dim1; + q -= q_offset; + --dsigma; + u_dim1 = *ldu; + u_offset = 1 + u_dim1; + u -= u_offset; + u2_dim1 = *ldu2; + u2_offset = 1 + u2_dim1; + u2 -= u2_offset; + vt_dim1 = *ldvt; + vt_offset = 1 + vt_dim1; + vt -= vt_offset; + vt2_dim1 = *ldvt2; + vt2_offset = 1 + vt2_dim1; + vt2 -= vt2_offset; + --idxc; + --ctot; + --z__; + + /* Function Body */ + *info = 0; + + if (*nl < 1) { + *info = -1; + } else if (*nr < 1) { + *info = -2; + } else if (*sqre != 1 && *sqre != 0) { + *info = -3; + } + + n = *nl + *nr + 1; + m = n + *sqre; + nlp1 = *nl + 1; + nlp2 = *nl + 2; + + if (*k < 1 || *k > n) { + *info = -4; + } else if (*ldq < *k) { + *info = -7; + } else if (*ldu < n) { + *info = -10; + } else if (*ldu2 < n) { + *info = -12; + } else if (*ldvt < m) { + *info = -14; + } else if (*ldvt2 < m) { + *info = -16; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("DLASD3", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*k == 1) { + d__[1] = abs(z__[1]); + dcopy_(&m, &vt2[vt2_dim1 + 1], ldvt2, &vt[vt_dim1 + 1], ldvt); + if (z__[1] > 0.) { + dcopy_(&n, &u2[u2_dim1 + 1], &c__1, &u[u_dim1 + 1], &c__1); + } else { + i__1 = n; + for (i__ = 1; i__ <= i__1; ++i__) { + u[i__ + u_dim1] = -u2[i__ + u2_dim1]; +/* L10: */ + } + } + return 0; + } + +/* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */ +/* be computed with high relative accuracy (barring over/underflow). */ +/* This is a problem on machines without a guard digit in */ +/* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */ +/* The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */ +/* which on any of these machines zeros out the bottommost */ +/* bit of DSIGMA(I) if it is 1; this makes the subsequent */ +/* subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */ +/* occurs. On binary machines with a guard digit (almost all */ +/* machines) it does not change DSIGMA(I) at all. On hexadecimal */ +/* and decimal machines with a guard digit, it slightly */ +/* changes the bottommost bits of DSIGMA(I). It does not account */ +/* for hexadecimal or decimal machines without guard digits */ +/* (we know of none). We use a subroutine call to compute */ +/* 2*DSIGMA(I) to prevent optimizing compilers from eliminating */ +/* this code. */ + + i__1 = *k; + for (i__ = 1; i__ <= i__1; ++i__) { + dsigma[i__] = dlamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__]; +/* L20: */ + } + +/* Keep a copy of Z. */ + + dcopy_(k, &z__[1], &c__1, &q[q_offset], &c__1); + +/* Normalize Z. */ + + rho = dnrm2_(k, &z__[1], &c__1); + dlascl_("G", &c__0, &c__0, &rho, &c_b13, k, &c__1, &z__[1], k, info); + rho *= rho; + +/* Find the new singular values. */ + + i__1 = *k; + for (j = 1; j <= i__1; ++j) { + dlasd4_(k, &j, &dsigma[1], &z__[1], &u[j * u_dim1 + 1], &rho, &d__[j], + &vt[j * vt_dim1 + 1], info); + +/* If the zero finder fails, the computation is terminated. */ + + if (*info != 0) { + return 0; + } +/* L30: */ + } + +/* Compute updated Z. */ + + i__1 = *k; + for (i__ = 1; i__ <= i__1; ++i__) { + z__[i__] = u[i__ + *k * u_dim1] * vt[i__ + *k * vt_dim1]; + i__2 = i__ - 1; + for (j = 1; j <= i__2; ++j) { + z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[ + i__] - dsigma[j]) / (dsigma[i__] + dsigma[j]); +/* L40: */ + } + i__2 = *k - 1; + for (j = i__; j <= i__2; ++j) { + z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[ + i__] - dsigma[j + 1]) / (dsigma[i__] + dsigma[j + 1]); +/* L50: */ + } + d__2 = sqrt((d__1 = z__[i__], abs(d__1))); + z__[i__] = d_sign(&d__2, &q[i__ + q_dim1]); +/* L60: */ + } + +/* Compute left singular vectors of the modified diagonal matrix, */ +/* and store related information for the right singular vectors. */ + + i__1 = *k; + for (i__ = 1; i__ <= i__1; ++i__) { + vt[i__ * vt_dim1 + 1] = z__[1] / u[i__ * u_dim1 + 1] / vt[i__ * + vt_dim1 + 1]; + u[i__ * u_dim1 + 1] = -1.; + i__2 = *k; + for (j = 2; j <= i__2; ++j) { + vt[j + i__ * vt_dim1] = z__[j] / u[j + i__ * u_dim1] / vt[j + i__ + * vt_dim1]; + u[j + i__ * u_dim1] = dsigma[j] * vt[j + i__ * vt_dim1]; +/* L70: */ + } + temp = dnrm2_(k, &u[i__ * u_dim1 + 1], &c__1); + q[i__ * q_dim1 + 1] = u[i__ * u_dim1 + 1] / temp; + i__2 = *k; + for (j = 2; j <= i__2; ++j) { + jc = idxc[j]; + q[j + i__ * q_dim1] = u[jc + i__ * u_dim1] / temp; +/* L80: */ + } +/* L90: */ + } + +/* Update the left singular vector matrix. */ + + if (*k == 2) { + dgemm_("N", "N", &n, k, k, &c_b13, &u2[u2_offset], ldu2, &q[q_offset], + ldq, &c_b26, &u[u_offset], ldu); + goto L100; + } + if (ctot[1] > 0) { + dgemm_("N", "N", nl, k, &ctot[1], &c_b13, &u2[(u2_dim1 << 1) + 1], + ldu2, &q[q_dim1 + 2], ldq, &c_b26, &u[u_dim1 + 1], ldu); + if (ctot[3] > 0) { + ktemp = ctot[1] + 2 + ctot[2]; + dgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1] +, ldu2, &q[ktemp + q_dim1], ldq, &c_b13, &u[u_dim1 + 1], + ldu); + } + } else if (ctot[3] > 0) { + ktemp = ctot[1] + 2 + ctot[2]; + dgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1], + ldu2, &q[ktemp + q_dim1], ldq, &c_b26, &u[u_dim1 + 1], ldu); + } else { + dlacpy_("F", nl, k, &u2[u2_offset], ldu2, &u[u_offset], ldu); + } + dcopy_(k, &q[q_dim1 + 1], ldq, &u[nlp1 + u_dim1], ldu); + ktemp = ctot[1] + 2; + ctemp = ctot[2] + ctot[3]; + dgemm_("N", "N", nr, k, &ctemp, &c_b13, &u2[nlp2 + ktemp * u2_dim1], ldu2, + &q[ktemp + q_dim1], ldq, &c_b26, &u[nlp2 + u_dim1], ldu); + +/* Generate the right singular vectors. */ + +L100: + i__1 = *k; + for (i__ = 1; i__ <= i__1; ++i__) { + temp = dnrm2_(k, &vt[i__ * vt_dim1 + 1], &c__1); + q[i__ + q_dim1] = vt[i__ * vt_dim1 + 1] / temp; + i__2 = *k; + for (j = 2; j <= i__2; ++j) { + jc = idxc[j]; + q[i__ + j * q_dim1] = vt[jc + i__ * vt_dim1] / temp; +/* L110: */ + } +/* L120: */ + } + +/* Update the right singular vector matrix. */ + + if (*k == 2) { + dgemm_("N", "N", k, &m, k, &c_b13, &q[q_offset], ldq, &vt2[vt2_offset] +, ldvt2, &c_b26, &vt[vt_offset], ldvt); + return 0; + } + ktemp = ctot[1] + 1; + dgemm_("N", "N", k, &nlp1, &ktemp, &c_b13, &q[q_dim1 + 1], ldq, &vt2[ + vt2_dim1 + 1], ldvt2, &c_b26, &vt[vt_dim1 + 1], ldvt); + ktemp = ctot[1] + 2 + ctot[2]; + if (ktemp <= *ldvt2) { + dgemm_("N", "N", k, &nlp1, &ctot[3], &c_b13, &q[ktemp * q_dim1 + 1], + ldq, &vt2[ktemp + vt2_dim1], ldvt2, &c_b13, &vt[vt_dim1 + 1], + ldvt); + } + + ktemp = ctot[1] + 1; + nrp1 = *nr + *sqre; + if (ktemp > 1) { + i__1 = *k; + for (i__ = 1; i__ <= i__1; ++i__) { + q[i__ + ktemp * q_dim1] = q[i__ + q_dim1]; +/* L130: */ + } + i__1 = m; + for (i__ = nlp2; i__ <= i__1; ++i__) { + vt2[ktemp + i__ * vt2_dim1] = vt2[i__ * vt2_dim1 + 1]; +/* L140: */ + } + } + ctemp = ctot[2] + 1 + ctot[3]; + dgemm_("N", "N", k, &nrp1, &ctemp, &c_b13, &q[ktemp * q_dim1 + 1], ldq, & + vt2[ktemp + nlp2 * vt2_dim1], ldvt2, &c_b26, &vt[nlp2 * vt_dim1 + + 1], ldvt); + + return 0; + +/* End of DLASD3 */ + +} /* dlasd3_ */ |