aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dlasd3.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dlasd3.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dlasd3.c')
-rw-r--r--contrib/libs/clapack/dlasd3.c452
1 files changed, 452 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dlasd3.c b/contrib/libs/clapack/dlasd3.c
new file mode 100644
index 0000000000..db8089b8ea
--- /dev/null
+++ b/contrib/libs/clapack/dlasd3.c
@@ -0,0 +1,452 @@
+/* dlasd3.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c__0 = 0;
+static doublereal c_b13 = 1.;
+static doublereal c_b26 = 0.;
+
+/* Subroutine */ int dlasd3_(integer *nl, integer *nr, integer *sqre, integer
+ *k, doublereal *d__, doublereal *q, integer *ldq, doublereal *dsigma,
+ doublereal *u, integer *ldu, doublereal *u2, integer *ldu2,
+ doublereal *vt, integer *ldvt, doublereal *vt2, integer *ldvt2,
+ integer *idxc, integer *ctot, doublereal *z__, integer *info)
+{
+ /* System generated locals */
+ integer q_dim1, q_offset, u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1,
+ vt_offset, vt2_dim1, vt2_offset, i__1, i__2;
+ doublereal d__1, d__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal), d_sign(doublereal *, doublereal *);
+
+ /* Local variables */
+ integer i__, j, m, n, jc;
+ doublereal rho;
+ integer nlp1, nlp2, nrp1;
+ doublereal temp;
+ extern doublereal dnrm2_(integer *, doublereal *, integer *);
+ extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
+ integer *, doublereal *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *);
+ integer ctemp;
+ extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
+ doublereal *, integer *);
+ integer ktemp;
+ extern doublereal dlamc3_(doublereal *, doublereal *);
+ extern /* Subroutine */ int dlasd4_(integer *, integer *, doublereal *,
+ doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *, integer *), dlascl_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, integer *, doublereal *,
+ integer *, integer *), dlacpy_(char *, integer *, integer
+ *, doublereal *, integer *, doublereal *, integer *),
+ xerbla_(char *, integer *);
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DLASD3 finds all the square roots of the roots of the secular */
+/* equation, as defined by the values in D and Z. It makes the */
+/* appropriate calls to DLASD4 and then updates the singular */
+/* vectors by matrix multiplication. */
+
+/* This code makes very mild assumptions about floating point */
+/* arithmetic. It will work on machines with a guard digit in */
+/* add/subtract, or on those binary machines without guard digits */
+/* which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
+/* It could conceivably fail on hexadecimal or decimal machines */
+/* without guard digits, but we know of none. */
+
+/* DLASD3 is called from DLASD1. */
+
+/* Arguments */
+/* ========= */
+
+/* NL (input) INTEGER */
+/* The row dimension of the upper block. NL >= 1. */
+
+/* NR (input) INTEGER */
+/* The row dimension of the lower block. NR >= 1. */
+
+/* SQRE (input) INTEGER */
+/* = 0: the lower block is an NR-by-NR square matrix. */
+/* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
+
+/* The bidiagonal matrix has N = NL + NR + 1 rows and */
+/* M = N + SQRE >= N columns. */
+
+/* K (input) INTEGER */
+/* The size of the secular equation, 1 =< K = < N. */
+
+/* D (output) DOUBLE PRECISION array, dimension(K) */
+/* On exit the square roots of the roots of the secular equation, */
+/* in ascending order. */
+
+/* Q (workspace) DOUBLE PRECISION array, */
+/* dimension at least (LDQ,K). */
+
+/* LDQ (input) INTEGER */
+/* The leading dimension of the array Q. LDQ >= K. */
+
+/* DSIGMA (input) DOUBLE PRECISION array, dimension(K) */
+/* The first K elements of this array contain the old roots */
+/* of the deflated updating problem. These are the poles */
+/* of the secular equation. */
+
+/* U (output) DOUBLE PRECISION array, dimension (LDU, N) */
+/* The last N - K columns of this matrix contain the deflated */
+/* left singular vectors. */
+
+/* LDU (input) INTEGER */
+/* The leading dimension of the array U. LDU >= N. */
+
+/* U2 (input/output) DOUBLE PRECISION array, dimension (LDU2, N) */
+/* The first K columns of this matrix contain the non-deflated */
+/* left singular vectors for the split problem. */
+
+/* LDU2 (input) INTEGER */
+/* The leading dimension of the array U2. LDU2 >= N. */
+
+/* VT (output) DOUBLE PRECISION array, dimension (LDVT, M) */
+/* The last M - K columns of VT' contain the deflated */
+/* right singular vectors. */
+
+/* LDVT (input) INTEGER */
+/* The leading dimension of the array VT. LDVT >= N. */
+
+/* VT2 (input/output) DOUBLE PRECISION array, dimension (LDVT2, N) */
+/* The first K columns of VT2' contain the non-deflated */
+/* right singular vectors for the split problem. */
+
+/* LDVT2 (input) INTEGER */
+/* The leading dimension of the array VT2. LDVT2 >= N. */
+
+/* IDXC (input) INTEGER array, dimension ( N ) */
+/* The permutation used to arrange the columns of U (and rows of */
+/* VT) into three groups: the first group contains non-zero */
+/* entries only at and above (or before) NL +1; the second */
+/* contains non-zero entries only at and below (or after) NL+2; */
+/* and the third is dense. The first column of U and the row of */
+/* VT are treated separately, however. */
+
+/* The rows of the singular vectors found by DLASD4 */
+/* must be likewise permuted before the matrix multiplies can */
+/* take place. */
+
+/* CTOT (input) INTEGER array, dimension ( 4 ) */
+/* A count of the total number of the various types of columns */
+/* in U (or rows in VT), as described in IDXC. The fourth column */
+/* type is any column which has been deflated. */
+
+/* Z (input) DOUBLE PRECISION array, dimension (K) */
+/* The first K elements of this array contain the components */
+/* of the deflation-adjusted updating row vector. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit. */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+/* > 0: if INFO = 1, an singular value did not converge */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Ming Gu and Huan Ren, Computer Science Division, University of */
+/* California at Berkeley, USA */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --d__;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1;
+ q -= q_offset;
+ --dsigma;
+ u_dim1 = *ldu;
+ u_offset = 1 + u_dim1;
+ u -= u_offset;
+ u2_dim1 = *ldu2;
+ u2_offset = 1 + u2_dim1;
+ u2 -= u2_offset;
+ vt_dim1 = *ldvt;
+ vt_offset = 1 + vt_dim1;
+ vt -= vt_offset;
+ vt2_dim1 = *ldvt2;
+ vt2_offset = 1 + vt2_dim1;
+ vt2 -= vt2_offset;
+ --idxc;
+ --ctot;
+ --z__;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*nl < 1) {
+ *info = -1;
+ } else if (*nr < 1) {
+ *info = -2;
+ } else if (*sqre != 1 && *sqre != 0) {
+ *info = -3;
+ }
+
+ n = *nl + *nr + 1;
+ m = n + *sqre;
+ nlp1 = *nl + 1;
+ nlp2 = *nl + 2;
+
+ if (*k < 1 || *k > n) {
+ *info = -4;
+ } else if (*ldq < *k) {
+ *info = -7;
+ } else if (*ldu < n) {
+ *info = -10;
+ } else if (*ldu2 < n) {
+ *info = -12;
+ } else if (*ldvt < m) {
+ *info = -14;
+ } else if (*ldvt2 < m) {
+ *info = -16;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLASD3", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*k == 1) {
+ d__[1] = abs(z__[1]);
+ dcopy_(&m, &vt2[vt2_dim1 + 1], ldvt2, &vt[vt_dim1 + 1], ldvt);
+ if (z__[1] > 0.) {
+ dcopy_(&n, &u2[u2_dim1 + 1], &c__1, &u[u_dim1 + 1], &c__1);
+ } else {
+ i__1 = n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ u[i__ + u_dim1] = -u2[i__ + u2_dim1];
+/* L10: */
+ }
+ }
+ return 0;
+ }
+
+/* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */
+/* be computed with high relative accuracy (barring over/underflow). */
+/* This is a problem on machines without a guard digit in */
+/* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
+/* The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */
+/* which on any of these machines zeros out the bottommost */
+/* bit of DSIGMA(I) if it is 1; this makes the subsequent */
+/* subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */
+/* occurs. On binary machines with a guard digit (almost all */
+/* machines) it does not change DSIGMA(I) at all. On hexadecimal */
+/* and decimal machines with a guard digit, it slightly */
+/* changes the bottommost bits of DSIGMA(I). It does not account */
+/* for hexadecimal or decimal machines without guard digits */
+/* (we know of none). We use a subroutine call to compute */
+/* 2*DSIGMA(I) to prevent optimizing compilers from eliminating */
+/* this code. */
+
+ i__1 = *k;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dsigma[i__] = dlamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
+/* L20: */
+ }
+
+/* Keep a copy of Z. */
+
+ dcopy_(k, &z__[1], &c__1, &q[q_offset], &c__1);
+
+/* Normalize Z. */
+
+ rho = dnrm2_(k, &z__[1], &c__1);
+ dlascl_("G", &c__0, &c__0, &rho, &c_b13, k, &c__1, &z__[1], k, info);
+ rho *= rho;
+
+/* Find the new singular values. */
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ dlasd4_(k, &j, &dsigma[1], &z__[1], &u[j * u_dim1 + 1], &rho, &d__[j],
+ &vt[j * vt_dim1 + 1], info);
+
+/* If the zero finder fails, the computation is terminated. */
+
+ if (*info != 0) {
+ return 0;
+ }
+/* L30: */
+ }
+
+/* Compute updated Z. */
+
+ i__1 = *k;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ z__[i__] = u[i__ + *k * u_dim1] * vt[i__ + *k * vt_dim1];
+ i__2 = i__ - 1;
+ for (j = 1; j <= i__2; ++j) {
+ z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
+ i__] - dsigma[j]) / (dsigma[i__] + dsigma[j]);
+/* L40: */
+ }
+ i__2 = *k - 1;
+ for (j = i__; j <= i__2; ++j) {
+ z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
+ i__] - dsigma[j + 1]) / (dsigma[i__] + dsigma[j + 1]);
+/* L50: */
+ }
+ d__2 = sqrt((d__1 = z__[i__], abs(d__1)));
+ z__[i__] = d_sign(&d__2, &q[i__ + q_dim1]);
+/* L60: */
+ }
+
+/* Compute left singular vectors of the modified diagonal matrix, */
+/* and store related information for the right singular vectors. */
+
+ i__1 = *k;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ vt[i__ * vt_dim1 + 1] = z__[1] / u[i__ * u_dim1 + 1] / vt[i__ *
+ vt_dim1 + 1];
+ u[i__ * u_dim1 + 1] = -1.;
+ i__2 = *k;
+ for (j = 2; j <= i__2; ++j) {
+ vt[j + i__ * vt_dim1] = z__[j] / u[j + i__ * u_dim1] / vt[j + i__
+ * vt_dim1];
+ u[j + i__ * u_dim1] = dsigma[j] * vt[j + i__ * vt_dim1];
+/* L70: */
+ }
+ temp = dnrm2_(k, &u[i__ * u_dim1 + 1], &c__1);
+ q[i__ * q_dim1 + 1] = u[i__ * u_dim1 + 1] / temp;
+ i__2 = *k;
+ for (j = 2; j <= i__2; ++j) {
+ jc = idxc[j];
+ q[j + i__ * q_dim1] = u[jc + i__ * u_dim1] / temp;
+/* L80: */
+ }
+/* L90: */
+ }
+
+/* Update the left singular vector matrix. */
+
+ if (*k == 2) {
+ dgemm_("N", "N", &n, k, k, &c_b13, &u2[u2_offset], ldu2, &q[q_offset],
+ ldq, &c_b26, &u[u_offset], ldu);
+ goto L100;
+ }
+ if (ctot[1] > 0) {
+ dgemm_("N", "N", nl, k, &ctot[1], &c_b13, &u2[(u2_dim1 << 1) + 1],
+ ldu2, &q[q_dim1 + 2], ldq, &c_b26, &u[u_dim1 + 1], ldu);
+ if (ctot[3] > 0) {
+ ktemp = ctot[1] + 2 + ctot[2];
+ dgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1]
+, ldu2, &q[ktemp + q_dim1], ldq, &c_b13, &u[u_dim1 + 1],
+ ldu);
+ }
+ } else if (ctot[3] > 0) {
+ ktemp = ctot[1] + 2 + ctot[2];
+ dgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1],
+ ldu2, &q[ktemp + q_dim1], ldq, &c_b26, &u[u_dim1 + 1], ldu);
+ } else {
+ dlacpy_("F", nl, k, &u2[u2_offset], ldu2, &u[u_offset], ldu);
+ }
+ dcopy_(k, &q[q_dim1 + 1], ldq, &u[nlp1 + u_dim1], ldu);
+ ktemp = ctot[1] + 2;
+ ctemp = ctot[2] + ctot[3];
+ dgemm_("N", "N", nr, k, &ctemp, &c_b13, &u2[nlp2 + ktemp * u2_dim1], ldu2,
+ &q[ktemp + q_dim1], ldq, &c_b26, &u[nlp2 + u_dim1], ldu);
+
+/* Generate the right singular vectors. */
+
+L100:
+ i__1 = *k;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ temp = dnrm2_(k, &vt[i__ * vt_dim1 + 1], &c__1);
+ q[i__ + q_dim1] = vt[i__ * vt_dim1 + 1] / temp;
+ i__2 = *k;
+ for (j = 2; j <= i__2; ++j) {
+ jc = idxc[j];
+ q[i__ + j * q_dim1] = vt[jc + i__ * vt_dim1] / temp;
+/* L110: */
+ }
+/* L120: */
+ }
+
+/* Update the right singular vector matrix. */
+
+ if (*k == 2) {
+ dgemm_("N", "N", k, &m, k, &c_b13, &q[q_offset], ldq, &vt2[vt2_offset]
+, ldvt2, &c_b26, &vt[vt_offset], ldvt);
+ return 0;
+ }
+ ktemp = ctot[1] + 1;
+ dgemm_("N", "N", k, &nlp1, &ktemp, &c_b13, &q[q_dim1 + 1], ldq, &vt2[
+ vt2_dim1 + 1], ldvt2, &c_b26, &vt[vt_dim1 + 1], ldvt);
+ ktemp = ctot[1] + 2 + ctot[2];
+ if (ktemp <= *ldvt2) {
+ dgemm_("N", "N", k, &nlp1, &ctot[3], &c_b13, &q[ktemp * q_dim1 + 1],
+ ldq, &vt2[ktemp + vt2_dim1], ldvt2, &c_b13, &vt[vt_dim1 + 1],
+ ldvt);
+ }
+
+ ktemp = ctot[1] + 1;
+ nrp1 = *nr + *sqre;
+ if (ktemp > 1) {
+ i__1 = *k;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ q[i__ + ktemp * q_dim1] = q[i__ + q_dim1];
+/* L130: */
+ }
+ i__1 = m;
+ for (i__ = nlp2; i__ <= i__1; ++i__) {
+ vt2[ktemp + i__ * vt2_dim1] = vt2[i__ * vt2_dim1 + 1];
+/* L140: */
+ }
+ }
+ ctemp = ctot[2] + 1 + ctot[3];
+ dgemm_("N", "N", k, &nrp1, &ctemp, &c_b13, &q[ktemp * q_dim1 + 1], ldq, &
+ vt2[ktemp + nlp2 * vt2_dim1], ldvt2, &c_b26, &vt[nlp2 * vt_dim1 +
+ 1], ldvt);
+
+ return 0;
+
+/* End of DLASD3 */
+
+} /* dlasd3_ */