aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dlasd1.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dlasd1.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dlasd1.c')
-rw-r--r--contrib/libs/clapack/dlasd1.c288
1 files changed, 288 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dlasd1.c b/contrib/libs/clapack/dlasd1.c
new file mode 100644
index 0000000000..84fb8e5f0b
--- /dev/null
+++ b/contrib/libs/clapack/dlasd1.c
@@ -0,0 +1,288 @@
+/* dlasd1.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__0 = 0;
+static doublereal c_b7 = 1.;
+static integer c__1 = 1;
+static integer c_n1 = -1;
+
+/* Subroutine */ int dlasd1_(integer *nl, integer *nr, integer *sqre,
+ doublereal *d__, doublereal *alpha, doublereal *beta, doublereal *u,
+ integer *ldu, doublereal *vt, integer *ldvt, integer *idxq, integer *
+ iwork, doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer u_dim1, u_offset, vt_dim1, vt_offset, i__1;
+ doublereal d__1, d__2;
+
+ /* Local variables */
+ integer i__, k, m, n, n1, n2, iq, iz, iu2, ldq, idx, ldu2, ivt2, idxc,
+ idxp, ldvt2;
+ extern /* Subroutine */ int dlasd2_(integer *, integer *, integer *,
+ integer *, doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ doublereal *, integer *, doublereal *, integer *, integer *,
+ integer *, integer *, integer *, integer *, integer *), dlasd3_(
+ integer *, integer *, integer *, integer *, doublereal *,
+ doublereal *, integer *, doublereal *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *, integer *, integer *, doublereal *, integer *),
+ dlascl_(char *, integer *, integer *, doublereal *, doublereal *,
+ integer *, integer *, doublereal *, integer *, integer *),
+ dlamrg_(integer *, integer *, doublereal *, integer *, integer *,
+ integer *);
+ integer isigma;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ doublereal orgnrm;
+ integer coltyp;
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B, */
+/* where N = NL + NR + 1 and M = N + SQRE. DLASD1 is called from DLASD0. */
+
+/* A related subroutine DLASD7 handles the case in which the singular */
+/* values (and the singular vectors in factored form) are desired. */
+
+/* DLASD1 computes the SVD as follows: */
+
+/* ( D1(in) 0 0 0 ) */
+/* B = U(in) * ( Z1' a Z2' b ) * VT(in) */
+/* ( 0 0 D2(in) 0 ) */
+
+/* = U(out) * ( D(out) 0) * VT(out) */
+
+/* where Z' = (Z1' a Z2' b) = u' VT', and u is a vector of dimension M */
+/* with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros */
+/* elsewhere; and the entry b is empty if SQRE = 0. */
+
+/* The left singular vectors of the original matrix are stored in U, and */
+/* the transpose of the right singular vectors are stored in VT, and the */
+/* singular values are in D. The algorithm consists of three stages: */
+
+/* The first stage consists of deflating the size of the problem */
+/* when there are multiple singular values or when there are zeros in */
+/* the Z vector. For each such occurence the dimension of the */
+/* secular equation problem is reduced by one. This stage is */
+/* performed by the routine DLASD2. */
+
+/* The second stage consists of calculating the updated */
+/* singular values. This is done by finding the square roots of the */
+/* roots of the secular equation via the routine DLASD4 (as called */
+/* by DLASD3). This routine also calculates the singular vectors of */
+/* the current problem. */
+
+/* The final stage consists of computing the updated singular vectors */
+/* directly using the updated singular values. The singular vectors */
+/* for the current problem are multiplied with the singular vectors */
+/* from the overall problem. */
+
+/* Arguments */
+/* ========= */
+
+/* NL (input) INTEGER */
+/* The row dimension of the upper block. NL >= 1. */
+
+/* NR (input) INTEGER */
+/* The row dimension of the lower block. NR >= 1. */
+
+/* SQRE (input) INTEGER */
+/* = 0: the lower block is an NR-by-NR square matrix. */
+/* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
+
+/* The bidiagonal matrix has row dimension N = NL + NR + 1, */
+/* and column dimension M = N + SQRE. */
+
+/* D (input/output) DOUBLE PRECISION array, */
+/* dimension (N = NL+NR+1). */
+/* On entry D(1:NL,1:NL) contains the singular values of the */
+/* upper block; and D(NL+2:N) contains the singular values of */
+/* the lower block. On exit D(1:N) contains the singular values */
+/* of the modified matrix. */
+
+/* ALPHA (input/output) DOUBLE PRECISION */
+/* Contains the diagonal element associated with the added row. */
+
+/* BETA (input/output) DOUBLE PRECISION */
+/* Contains the off-diagonal element associated with the added */
+/* row. */
+
+/* U (input/output) DOUBLE PRECISION array, dimension(LDU,N) */
+/* On entry U(1:NL, 1:NL) contains the left singular vectors of */
+/* the upper block; U(NL+2:N, NL+2:N) contains the left singular */
+/* vectors of the lower block. On exit U contains the left */
+/* singular vectors of the bidiagonal matrix. */
+
+/* LDU (input) INTEGER */
+/* The leading dimension of the array U. LDU >= max( 1, N ). */
+
+/* VT (input/output) DOUBLE PRECISION array, dimension(LDVT,M) */
+/* where M = N + SQRE. */
+/* On entry VT(1:NL+1, 1:NL+1)' contains the right singular */
+/* vectors of the upper block; VT(NL+2:M, NL+2:M)' contains */
+/* the right singular vectors of the lower block. On exit */
+/* VT' contains the right singular vectors of the */
+/* bidiagonal matrix. */
+
+/* LDVT (input) INTEGER */
+/* The leading dimension of the array VT. LDVT >= max( 1, M ). */
+
+/* IDXQ (output) INTEGER array, dimension(N) */
+/* This contains the permutation which will reintegrate the */
+/* subproblem just solved back into sorted order, i.e. */
+/* D( IDXQ( I = 1, N ) ) will be in ascending order. */
+
+/* IWORK (workspace) INTEGER array, dimension( 4 * N ) */
+
+/* WORK (workspace) DOUBLE PRECISION array, dimension( 3*M**2 + 2*M ) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit. */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+/* > 0: if INFO = 1, an singular value did not converge */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Ming Gu and Huan Ren, Computer Science Division, University of */
+/* California at Berkeley, USA */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --d__;
+ u_dim1 = *ldu;
+ u_offset = 1 + u_dim1;
+ u -= u_offset;
+ vt_dim1 = *ldvt;
+ vt_offset = 1 + vt_dim1;
+ vt -= vt_offset;
+ --idxq;
+ --iwork;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+
+ if (*nl < 1) {
+ *info = -1;
+ } else if (*nr < 1) {
+ *info = -2;
+ } else if (*sqre < 0 || *sqre > 1) {
+ *info = -3;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DLASD1", &i__1);
+ return 0;
+ }
+
+ n = *nl + *nr + 1;
+ m = n + *sqre;
+
+/* The following values are for bookkeeping purposes only. They are */
+/* integer pointers which indicate the portion of the workspace */
+/* used by a particular array in DLASD2 and DLASD3. */
+
+ ldu2 = n;
+ ldvt2 = m;
+
+ iz = 1;
+ isigma = iz + m;
+ iu2 = isigma + n;
+ ivt2 = iu2 + ldu2 * n;
+ iq = ivt2 + ldvt2 * m;
+
+ idx = 1;
+ idxc = idx + n;
+ coltyp = idxc + n;
+ idxp = coltyp + n;
+
+/* Scale. */
+
+/* Computing MAX */
+ d__1 = abs(*alpha), d__2 = abs(*beta);
+ orgnrm = max(d__1,d__2);
+ d__[*nl + 1] = 0.;
+ i__1 = n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if ((d__1 = d__[i__], abs(d__1)) > orgnrm) {
+ orgnrm = (d__1 = d__[i__], abs(d__1));
+ }
+/* L10: */
+ }
+ dlascl_("G", &c__0, &c__0, &orgnrm, &c_b7, &n, &c__1, &d__[1], &n, info);
+ *alpha /= orgnrm;
+ *beta /= orgnrm;
+
+/* Deflate singular values. */
+
+ dlasd2_(nl, nr, sqre, &k, &d__[1], &work[iz], alpha, beta, &u[u_offset],
+ ldu, &vt[vt_offset], ldvt, &work[isigma], &work[iu2], &ldu2, &
+ work[ivt2], &ldvt2, &iwork[idxp], &iwork[idx], &iwork[idxc], &
+ idxq[1], &iwork[coltyp], info);
+
+/* Solve Secular Equation and update singular vectors. */
+
+ ldq = k;
+ dlasd3_(nl, nr, sqre, &k, &d__[1], &work[iq], &ldq, &work[isigma], &u[
+ u_offset], ldu, &work[iu2], &ldu2, &vt[vt_offset], ldvt, &work[
+ ivt2], &ldvt2, &iwork[idxc], &iwork[coltyp], &work[iz], info);
+ if (*info != 0) {
+ return 0;
+ }
+
+/* Unscale. */
+
+ dlascl_("G", &c__0, &c__0, &c_b7, &orgnrm, &n, &c__1, &d__[1], &n, info);
+
+/* Prepare the IDXQ sorting permutation. */
+
+ n1 = k;
+ n2 = n - k;
+ dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &idxq[1]);
+
+ return 0;
+
+/* End of DLASD1 */
+
+} /* dlasd1_ */