aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dlaruv.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dlaruv.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dlaruv.c')
-rw-r--r--contrib/libs/clapack/dlaruv.c192
1 files changed, 192 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dlaruv.c b/contrib/libs/clapack/dlaruv.c
new file mode 100644
index 0000000000..fa9f96f804
--- /dev/null
+++ b/contrib/libs/clapack/dlaruv.c
@@ -0,0 +1,192 @@
+/* dlaruv.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int dlaruv_(integer *iseed, integer *n, doublereal *x)
+{
+ /* Initialized data */
+
+ static integer mm[512] /* was [128][4] */ = { 494,2637,255,2008,1253,
+ 3344,4084,1739,3143,3468,688,1657,1238,3166,1292,3422,1270,2016,
+ 154,2862,697,1706,491,931,1444,444,3577,3944,2184,1661,3482,657,
+ 3023,3618,1267,1828,164,3798,3087,2400,2870,3876,1905,1593,1797,
+ 1234,3460,328,2861,1950,617,2070,3331,769,1558,2412,2800,189,287,
+ 2045,1227,2838,209,2770,3654,3993,192,2253,3491,2889,2857,2094,
+ 1818,688,1407,634,3231,815,3524,1914,516,164,303,2144,3480,119,
+ 3357,837,2826,2332,2089,3780,1700,3712,150,2000,3375,1621,3090,
+ 3765,1149,3146,33,3082,2741,359,3316,1749,185,2784,2202,2199,1364,
+ 1244,2020,3160,2785,2772,1217,1822,1245,2252,3904,2774,997,2573,
+ 1148,545,322,789,1440,752,2859,123,1848,643,2405,2638,2344,46,
+ 3814,913,3649,339,3808,822,2832,3078,3633,2970,637,2249,2081,4019,
+ 1478,242,481,2075,4058,622,3376,812,234,641,4005,1122,3135,2640,
+ 2302,40,1832,2247,2034,2637,1287,1691,496,1597,2394,2584,1843,336,
+ 1472,2407,433,2096,1761,2810,566,442,41,1238,1086,603,840,3168,
+ 1499,1084,3438,2408,1589,2391,288,26,512,1456,171,1677,2657,2270,
+ 2587,2961,1970,1817,676,1410,3723,2803,3185,184,663,499,3784,1631,
+ 1925,3912,1398,1349,1441,2224,2411,1907,3192,2786,382,37,759,2948,
+ 1862,3802,2423,2051,2295,1332,1832,2405,3638,3661,327,3660,716,
+ 1842,3987,1368,1848,2366,2508,3754,1766,3572,2893,307,1297,3966,
+ 758,2598,3406,2922,1038,2934,2091,2451,1580,1958,2055,1507,1078,
+ 3273,17,854,2916,3971,2889,3831,2621,1541,893,736,3992,787,2125,
+ 2364,2460,257,1574,3912,1216,3248,3401,2124,2762,149,2245,166,466,
+ 4018,1399,190,2879,153,2320,18,712,2159,2318,2091,3443,1510,449,
+ 1956,2201,3137,3399,1321,2271,3667,2703,629,2365,2431,1113,3922,
+ 2554,184,2099,3228,4012,1921,3452,3901,572,3309,3171,817,3039,
+ 1696,1256,3715,2077,3019,1497,1101,717,51,981,1978,1813,3881,76,
+ 3846,3694,1682,124,1660,3997,479,1141,886,3514,1301,3604,1888,
+ 1836,1990,2058,692,1194,20,3285,2046,2107,3508,3525,3801,2549,
+ 1145,2253,305,3301,1065,3133,2913,3285,1241,1197,3729,2501,1673,
+ 541,2753,949,2361,1165,4081,2725,3305,3069,3617,3733,409,2157,
+ 1361,3973,1865,2525,1409,3445,3577,77,3761,2149,1449,3005,225,85,
+ 3673,3117,3089,1349,2057,413,65,1845,697,3085,3441,1573,3689,2941,
+ 929,533,2841,4077,721,2821,2249,2397,2817,245,1913,1997,3121,997,
+ 1833,2877,1633,981,2009,941,2449,197,2441,285,1473,2741,3129,909,
+ 2801,421,4073,2813,2337,1429,1177,1901,81,1669,2633,2269,129,1141,
+ 249,3917,2481,3941,2217,2749,3041,1877,345,2861,1809,3141,2825,
+ 157,2881,3637,1465,2829,2161,3365,361,2685,3745,2325,3609,3821,
+ 3537,517,3017,2141,1537 };
+
+ /* System generated locals */
+ integer i__1;
+
+ /* Local variables */
+ integer i__, i1, i2, i3, i4, it1, it2, it3, it4;
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DLARUV returns a vector of n random real numbers from a uniform (0,1) */
+/* distribution (n <= 128). */
+
+/* This is an auxiliary routine called by DLARNV and ZLARNV. */
+
+/* Arguments */
+/* ========= */
+
+/* ISEED (input/output) INTEGER array, dimension (4) */
+/* On entry, the seed of the random number generator; the array */
+/* elements must be between 0 and 4095, and ISEED(4) must be */
+/* odd. */
+/* On exit, the seed is updated. */
+
+/* N (input) INTEGER */
+/* The number of random numbers to be generated. N <= 128. */
+
+/* X (output) DOUBLE PRECISION array, dimension (N) */
+/* The generated random numbers. */
+
+/* Further Details */
+/* =============== */
+
+/* This routine uses a multiplicative congruential method with modulus */
+/* 2**48 and multiplier 33952834046453 (see G.S.Fishman, */
+/* 'Multiplicative congruential random number generators with modulus */
+/* 2**b: an exhaustive analysis for b = 32 and a partial analysis for */
+/* b = 48', Math. Comp. 189, pp 331-344, 1990). */
+
+/* 48-bit integers are stored in 4 integer array elements with 12 bits */
+/* per element. Hence the routine is portable across machines with */
+/* integers of 32 bits or more. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Data statements .. */
+ /* Parameter adjustments */
+ --iseed;
+ --x;
+
+ /* Function Body */
+/* .. */
+/* .. Executable Statements .. */
+
+ i1 = iseed[1];
+ i2 = iseed[2];
+ i3 = iseed[3];
+ i4 = iseed[4];
+
+ i__1 = min(*n,128);
+ for (i__ = 1; i__ <= i__1; ++i__) {
+
+L20:
+
+/* Multiply the seed by i-th power of the multiplier modulo 2**48 */
+
+ it4 = i4 * mm[i__ + 383];
+ it3 = it4 / 4096;
+ it4 -= it3 << 12;
+ it3 = it3 + i3 * mm[i__ + 383] + i4 * mm[i__ + 255];
+ it2 = it3 / 4096;
+ it3 -= it2 << 12;
+ it2 = it2 + i2 * mm[i__ + 383] + i3 * mm[i__ + 255] + i4 * mm[i__ +
+ 127];
+ it1 = it2 / 4096;
+ it2 -= it1 << 12;
+ it1 = it1 + i1 * mm[i__ + 383] + i2 * mm[i__ + 255] + i3 * mm[i__ +
+ 127] + i4 * mm[i__ - 1];
+ it1 %= 4096;
+
+/* Convert 48-bit integer to a real number in the interval (0,1) */
+
+ x[i__] = ((doublereal) it1 + ((doublereal) it2 + ((doublereal) it3 + (
+ doublereal) it4 * 2.44140625e-4) * 2.44140625e-4) *
+ 2.44140625e-4) * 2.44140625e-4;
+
+ if (x[i__] == 1.) {
+/* If a real number has n bits of precision, and the first */
+/* n bits of the 48-bit integer above happen to be all 1 (which */
+/* will occur about once every 2**n calls), then X( I ) will */
+/* be rounded to exactly 1.0. */
+/* Since X( I ) is not supposed to return exactly 0.0 or 1.0, */
+/* the statistically correct thing to do in this situation is */
+/* simply to iterate again. */
+/* N.B. the case X( I ) = 0.0 should not be possible. */
+ i1 += 2;
+ i2 += 2;
+ i3 += 2;
+ i4 += 2;
+ goto L20;
+ }
+
+/* L10: */
+ }
+
+/* Return final value of seed */
+
+ iseed[1] = it1;
+ iseed[2] = it2;
+ iseed[3] = it3;
+ iseed[4] = it4;
+ return 0;
+
+/* End of DLARUV */
+
+} /* dlaruv_ */