aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dlaqtr.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dlaqtr.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dlaqtr.c')
-rw-r--r--contrib/libs/clapack/dlaqtr.c832
1 files changed, 832 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dlaqtr.c b/contrib/libs/clapack/dlaqtr.c
new file mode 100644
index 0000000000..e8c7e93fcb
--- /dev/null
+++ b/contrib/libs/clapack/dlaqtr.c
@@ -0,0 +1,832 @@
+/* dlaqtr.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static logical c_false = FALSE_;
+static integer c__2 = 2;
+static doublereal c_b21 = 1.;
+static doublereal c_b25 = 0.;
+static logical c_true = TRUE_;
+
+/* Subroutine */ int dlaqtr_(logical *ltran, logical *lreal, integer *n,
+ doublereal *t, integer *ldt, doublereal *b, doublereal *w, doublereal
+ *scale, doublereal *x, doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer t_dim1, t_offset, i__1, i__2;
+ doublereal d__1, d__2, d__3, d__4, d__5, d__6;
+
+ /* Local variables */
+ doublereal d__[4] /* was [2][2] */;
+ integer i__, j, k;
+ doublereal v[4] /* was [2][2] */, z__;
+ integer j1, j2, n1, n2;
+ doublereal si, xj, sr, rec, eps, tjj, tmp;
+ extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
+ integer *);
+ integer ierr;
+ doublereal smin, xmax;
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *);
+ extern doublereal dasum_(integer *, doublereal *, integer *);
+ extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *);
+ integer jnext;
+ doublereal sminw, xnorm;
+ extern /* Subroutine */ int dlaln2_(logical *, integer *, integer *,
+ doublereal *, doublereal *, doublereal *, integer *, doublereal *,
+ doublereal *, doublereal *, integer *, doublereal *, doublereal *
+, doublereal *, integer *, doublereal *, doublereal *, integer *);
+ extern doublereal dlamch_(char *), dlange_(char *, integer *,
+ integer *, doublereal *, integer *, doublereal *);
+ extern integer idamax_(integer *, doublereal *, integer *);
+ doublereal scaloc;
+ extern /* Subroutine */ int dladiv_(doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *, doublereal *);
+ doublereal bignum;
+ logical notran;
+ doublereal smlnum;
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DLAQTR solves the real quasi-triangular system */
+
+/* op(T)*p = scale*c, if LREAL = .TRUE. */
+
+/* or the complex quasi-triangular systems */
+
+/* op(T + iB)*(p+iq) = scale*(c+id), if LREAL = .FALSE. */
+
+/* in real arithmetic, where T is upper quasi-triangular. */
+/* If LREAL = .FALSE., then the first diagonal block of T must be */
+/* 1 by 1, B is the specially structured matrix */
+
+/* B = [ b(1) b(2) ... b(n) ] */
+/* [ w ] */
+/* [ w ] */
+/* [ . ] */
+/* [ w ] */
+
+/* op(A) = A or A', A' denotes the conjugate transpose of */
+/* matrix A. */
+
+/* On input, X = [ c ]. On output, X = [ p ]. */
+/* [ d ] [ q ] */
+
+/* This subroutine is designed for the condition number estimation */
+/* in routine DTRSNA. */
+
+/* Arguments */
+/* ========= */
+
+/* LTRAN (input) LOGICAL */
+/* On entry, LTRAN specifies the option of conjugate transpose: */
+/* = .FALSE., op(T+i*B) = T+i*B, */
+/* = .TRUE., op(T+i*B) = (T+i*B)'. */
+
+/* LREAL (input) LOGICAL */
+/* On entry, LREAL specifies the input matrix structure: */
+/* = .FALSE., the input is complex */
+/* = .TRUE., the input is real */
+
+/* N (input) INTEGER */
+/* On entry, N specifies the order of T+i*B. N >= 0. */
+
+/* T (input) DOUBLE PRECISION array, dimension (LDT,N) */
+/* On entry, T contains a matrix in Schur canonical form. */
+/* If LREAL = .FALSE., then the first diagonal block of T mu */
+/* be 1 by 1. */
+
+/* LDT (input) INTEGER */
+/* The leading dimension of the matrix T. LDT >= max(1,N). */
+
+/* B (input) DOUBLE PRECISION array, dimension (N) */
+/* On entry, B contains the elements to form the matrix */
+/* B as described above. */
+/* If LREAL = .TRUE., B is not referenced. */
+
+/* W (input) DOUBLE PRECISION */
+/* On entry, W is the diagonal element of the matrix B. */
+/* If LREAL = .TRUE., W is not referenced. */
+
+/* SCALE (output) DOUBLE PRECISION */
+/* On exit, SCALE is the scale factor. */
+
+/* X (input/output) DOUBLE PRECISION array, dimension (2*N) */
+/* On entry, X contains the right hand side of the system. */
+/* On exit, X is overwritten by the solution. */
+
+/* WORK (workspace) DOUBLE PRECISION array, dimension (N) */
+
+/* INFO (output) INTEGER */
+/* On exit, INFO is set to */
+/* 0: successful exit. */
+/* 1: the some diagonal 1 by 1 block has been perturbed by */
+/* a small number SMIN to keep nonsingularity. */
+/* 2: the some diagonal 2 by 2 block has been perturbed by */
+/* a small number in DLALN2 to keep nonsingularity. */
+/* NOTE: In the interests of speed, this routine does not */
+/* check the inputs for errors. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Do not test the input parameters for errors */
+
+ /* Parameter adjustments */
+ t_dim1 = *ldt;
+ t_offset = 1 + t_dim1;
+ t -= t_offset;
+ --b;
+ --x;
+ --work;
+
+ /* Function Body */
+ notran = ! (*ltran);
+ *info = 0;
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Set constants to control overflow */
+
+ eps = dlamch_("P");
+ smlnum = dlamch_("S") / eps;
+ bignum = 1. / smlnum;
+
+ xnorm = dlange_("M", n, n, &t[t_offset], ldt, d__);
+ if (! (*lreal)) {
+/* Computing MAX */
+ d__1 = xnorm, d__2 = abs(*w), d__1 = max(d__1,d__2), d__2 = dlange_(
+ "M", n, &c__1, &b[1], n, d__);
+ xnorm = max(d__1,d__2);
+ }
+/* Computing MAX */
+ d__1 = smlnum, d__2 = eps * xnorm;
+ smin = max(d__1,d__2);
+
+/* Compute 1-norm of each column of strictly upper triangular */
+/* part of T to control overflow in triangular solver. */
+
+ work[1] = 0.;
+ i__1 = *n;
+ for (j = 2; j <= i__1; ++j) {
+ i__2 = j - 1;
+ work[j] = dasum_(&i__2, &t[j * t_dim1 + 1], &c__1);
+/* L10: */
+ }
+
+ if (! (*lreal)) {
+ i__1 = *n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ work[i__] += (d__1 = b[i__], abs(d__1));
+/* L20: */
+ }
+ }
+
+ n2 = *n << 1;
+ n1 = *n;
+ if (! (*lreal)) {
+ n1 = n2;
+ }
+ k = idamax_(&n1, &x[1], &c__1);
+ xmax = (d__1 = x[k], abs(d__1));
+ *scale = 1.;
+
+ if (xmax > bignum) {
+ *scale = bignum / xmax;
+ dscal_(&n1, scale, &x[1], &c__1);
+ xmax = bignum;
+ }
+
+ if (*lreal) {
+
+ if (notran) {
+
+/* Solve T*p = scale*c */
+
+ jnext = *n;
+ for (j = *n; j >= 1; --j) {
+ if (j > jnext) {
+ goto L30;
+ }
+ j1 = j;
+ j2 = j;
+ jnext = j - 1;
+ if (j > 1) {
+ if (t[j + (j - 1) * t_dim1] != 0.) {
+ j1 = j - 1;
+ jnext = j - 2;
+ }
+ }
+
+ if (j1 == j2) {
+
+/* Meet 1 by 1 diagonal block */
+
+/* Scale to avoid overflow when computing */
+/* x(j) = b(j)/T(j,j) */
+
+ xj = (d__1 = x[j1], abs(d__1));
+ tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1));
+ tmp = t[j1 + j1 * t_dim1];
+ if (tjj < smin) {
+ tmp = smin;
+ tjj = smin;
+ *info = 1;
+ }
+
+ if (xj == 0.) {
+ goto L30;
+ }
+
+ if (tjj < 1.) {
+ if (xj > bignum * tjj) {
+ rec = 1. / xj;
+ dscal_(n, &rec, &x[1], &c__1);
+ *scale *= rec;
+ xmax *= rec;
+ }
+ }
+ x[j1] /= tmp;
+ xj = (d__1 = x[j1], abs(d__1));
+
+/* Scale x if necessary to avoid overflow when adding a */
+/* multiple of column j1 of T. */
+
+ if (xj > 1.) {
+ rec = 1. / xj;
+ if (work[j1] > (bignum - xmax) * rec) {
+ dscal_(n, &rec, &x[1], &c__1);
+ *scale *= rec;
+ }
+ }
+ if (j1 > 1) {
+ i__1 = j1 - 1;
+ d__1 = -x[j1];
+ daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
+, &c__1);
+ i__1 = j1 - 1;
+ k = idamax_(&i__1, &x[1], &c__1);
+ xmax = (d__1 = x[k], abs(d__1));
+ }
+
+ } else {
+
+/* Meet 2 by 2 diagonal block */
+
+/* Call 2 by 2 linear system solve, to take */
+/* care of possible overflow by scaling factor. */
+
+ d__[0] = x[j1];
+ d__[1] = x[j2];
+ dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1
+ * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
+ c_b25, &c_b25, v, &c__2, &scaloc, &xnorm, &ierr);
+ if (ierr != 0) {
+ *info = 2;
+ }
+
+ if (scaloc != 1.) {
+ dscal_(n, &scaloc, &x[1], &c__1);
+ *scale *= scaloc;
+ }
+ x[j1] = v[0];
+ x[j2] = v[1];
+
+/* Scale V(1,1) (= X(J1)) and/or V(2,1) (=X(J2)) */
+/* to avoid overflow in updating right-hand side. */
+
+/* Computing MAX */
+ d__1 = abs(v[0]), d__2 = abs(v[1]);
+ xj = max(d__1,d__2);
+ if (xj > 1.) {
+ rec = 1. / xj;
+/* Computing MAX */
+ d__1 = work[j1], d__2 = work[j2];
+ if (max(d__1,d__2) > (bignum - xmax) * rec) {
+ dscal_(n, &rec, &x[1], &c__1);
+ *scale *= rec;
+ }
+ }
+
+/* Update right-hand side */
+
+ if (j1 > 1) {
+ i__1 = j1 - 1;
+ d__1 = -x[j1];
+ daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
+, &c__1);
+ i__1 = j1 - 1;
+ d__1 = -x[j2];
+ daxpy_(&i__1, &d__1, &t[j2 * t_dim1 + 1], &c__1, &x[1]
+, &c__1);
+ i__1 = j1 - 1;
+ k = idamax_(&i__1, &x[1], &c__1);
+ xmax = (d__1 = x[k], abs(d__1));
+ }
+
+ }
+
+L30:
+ ;
+ }
+
+ } else {
+
+/* Solve T'*p = scale*c */
+
+ jnext = 1;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (j < jnext) {
+ goto L40;
+ }
+ j1 = j;
+ j2 = j;
+ jnext = j + 1;
+ if (j < *n) {
+ if (t[j + 1 + j * t_dim1] != 0.) {
+ j2 = j + 1;
+ jnext = j + 2;
+ }
+ }
+
+ if (j1 == j2) {
+
+/* 1 by 1 diagonal block */
+
+/* Scale if necessary to avoid overflow in forming the */
+/* right-hand side element by inner product. */
+
+ xj = (d__1 = x[j1], abs(d__1));
+ if (xmax > 1.) {
+ rec = 1. / xmax;
+ if (work[j1] > (bignum - xj) * rec) {
+ dscal_(n, &rec, &x[1], &c__1);
+ *scale *= rec;
+ xmax *= rec;
+ }
+ }
+
+ i__2 = j1 - 1;
+ x[j1] -= ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &
+ c__1);
+
+ xj = (d__1 = x[j1], abs(d__1));
+ tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1));
+ tmp = t[j1 + j1 * t_dim1];
+ if (tjj < smin) {
+ tmp = smin;
+ tjj = smin;
+ *info = 1;
+ }
+
+ if (tjj < 1.) {
+ if (xj > bignum * tjj) {
+ rec = 1. / xj;
+ dscal_(n, &rec, &x[1], &c__1);
+ *scale *= rec;
+ xmax *= rec;
+ }
+ }
+ x[j1] /= tmp;
+/* Computing MAX */
+ d__2 = xmax, d__3 = (d__1 = x[j1], abs(d__1));
+ xmax = max(d__2,d__3);
+
+ } else {
+
+/* 2 by 2 diagonal block */
+
+/* Scale if necessary to avoid overflow in forming the */
+/* right-hand side elements by inner product. */
+
+/* Computing MAX */
+ d__3 = (d__1 = x[j1], abs(d__1)), d__4 = (d__2 = x[j2],
+ abs(d__2));
+ xj = max(d__3,d__4);
+ if (xmax > 1.) {
+ rec = 1. / xmax;
+/* Computing MAX */
+ d__1 = work[j2], d__2 = work[j1];
+ if (max(d__1,d__2) > (bignum - xj) * rec) {
+ dscal_(n, &rec, &x[1], &c__1);
+ *scale *= rec;
+ xmax *= rec;
+ }
+ }
+
+ i__2 = j1 - 1;
+ d__[0] = x[j1] - ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1,
+ &x[1], &c__1);
+ i__2 = j1 - 1;
+ d__[1] = x[j2] - ddot_(&i__2, &t[j2 * t_dim1 + 1], &c__1,
+ &x[1], &c__1);
+
+ dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1 *
+ t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &c_b25,
+ &c_b25, v, &c__2, &scaloc, &xnorm, &ierr);
+ if (ierr != 0) {
+ *info = 2;
+ }
+
+ if (scaloc != 1.) {
+ dscal_(n, &scaloc, &x[1], &c__1);
+ *scale *= scaloc;
+ }
+ x[j1] = v[0];
+ x[j2] = v[1];
+/* Computing MAX */
+ d__3 = (d__1 = x[j1], abs(d__1)), d__4 = (d__2 = x[j2],
+ abs(d__2)), d__3 = max(d__3,d__4);
+ xmax = max(d__3,xmax);
+
+ }
+L40:
+ ;
+ }
+ }
+
+ } else {
+
+/* Computing MAX */
+ d__1 = eps * abs(*w);
+ sminw = max(d__1,smin);
+ if (notran) {
+
+/* Solve (T + iB)*(p+iq) = c+id */
+
+ jnext = *n;
+ for (j = *n; j >= 1; --j) {
+ if (j > jnext) {
+ goto L70;
+ }
+ j1 = j;
+ j2 = j;
+ jnext = j - 1;
+ if (j > 1) {
+ if (t[j + (j - 1) * t_dim1] != 0.) {
+ j1 = j - 1;
+ jnext = j - 2;
+ }
+ }
+
+ if (j1 == j2) {
+
+/* 1 by 1 diagonal block */
+
+/* Scale if necessary to avoid overflow in division */
+
+ z__ = *w;
+ if (j1 == 1) {
+ z__ = b[1];
+ }
+ xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs(
+ d__2));
+ tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1)) + abs(z__);
+ tmp = t[j1 + j1 * t_dim1];
+ if (tjj < sminw) {
+ tmp = sminw;
+ tjj = sminw;
+ *info = 1;
+ }
+
+ if (xj == 0.) {
+ goto L70;
+ }
+
+ if (tjj < 1.) {
+ if (xj > bignum * tjj) {
+ rec = 1. / xj;
+ dscal_(&n2, &rec, &x[1], &c__1);
+ *scale *= rec;
+ xmax *= rec;
+ }
+ }
+ dladiv_(&x[j1], &x[*n + j1], &tmp, &z__, &sr, &si);
+ x[j1] = sr;
+ x[*n + j1] = si;
+ xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs(
+ d__2));
+
+/* Scale x if necessary to avoid overflow when adding a */
+/* multiple of column j1 of T. */
+
+ if (xj > 1.) {
+ rec = 1. / xj;
+ if (work[j1] > (bignum - xmax) * rec) {
+ dscal_(&n2, &rec, &x[1], &c__1);
+ *scale *= rec;
+ }
+ }
+
+ if (j1 > 1) {
+ i__1 = j1 - 1;
+ d__1 = -x[j1];
+ daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
+, &c__1);
+ i__1 = j1 - 1;
+ d__1 = -x[*n + j1];
+ daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[*
+ n + 1], &c__1);
+
+ x[1] += b[j1] * x[*n + j1];
+ x[*n + 1] -= b[j1] * x[j1];
+
+ xmax = 0.;
+ i__1 = j1 - 1;
+ for (k = 1; k <= i__1; ++k) {
+/* Computing MAX */
+ d__3 = xmax, d__4 = (d__1 = x[k], abs(d__1)) + (
+ d__2 = x[k + *n], abs(d__2));
+ xmax = max(d__3,d__4);
+/* L50: */
+ }
+ }
+
+ } else {
+
+/* Meet 2 by 2 diagonal block */
+
+ d__[0] = x[j1];
+ d__[1] = x[j2];
+ d__[2] = x[*n + j1];
+ d__[3] = x[*n + j2];
+ d__1 = -(*w);
+ dlaln2_(&c_false, &c__2, &c__2, &sminw, &c_b21, &t[j1 +
+ j1 * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
+ c_b25, &d__1, v, &c__2, &scaloc, &xnorm, &ierr);
+ if (ierr != 0) {
+ *info = 2;
+ }
+
+ if (scaloc != 1.) {
+ i__1 = *n << 1;
+ dscal_(&i__1, &scaloc, &x[1], &c__1);
+ *scale = scaloc * *scale;
+ }
+ x[j1] = v[0];
+ x[j2] = v[1];
+ x[*n + j1] = v[2];
+ x[*n + j2] = v[3];
+
+/* Scale X(J1), .... to avoid overflow in */
+/* updating right hand side. */
+
+/* Computing MAX */
+ d__1 = abs(v[0]) + abs(v[2]), d__2 = abs(v[1]) + abs(v[3])
+ ;
+ xj = max(d__1,d__2);
+ if (xj > 1.) {
+ rec = 1. / xj;
+/* Computing MAX */
+ d__1 = work[j1], d__2 = work[j2];
+ if (max(d__1,d__2) > (bignum - xmax) * rec) {
+ dscal_(&n2, &rec, &x[1], &c__1);
+ *scale *= rec;
+ }
+ }
+
+/* Update the right-hand side. */
+
+ if (j1 > 1) {
+ i__1 = j1 - 1;
+ d__1 = -x[j1];
+ daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
+, &c__1);
+ i__1 = j1 - 1;
+ d__1 = -x[j2];
+ daxpy_(&i__1, &d__1, &t[j2 * t_dim1 + 1], &c__1, &x[1]
+, &c__1);
+
+ i__1 = j1 - 1;
+ d__1 = -x[*n + j1];
+ daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[*
+ n + 1], &c__1);
+ i__1 = j1 - 1;
+ d__1 = -x[*n + j2];
+ daxpy_(&i__1, &d__1, &t[j2 * t_dim1 + 1], &c__1, &x[*
+ n + 1], &c__1);
+
+ x[1] = x[1] + b[j1] * x[*n + j1] + b[j2] * x[*n + j2];
+ x[*n + 1] = x[*n + 1] - b[j1] * x[j1] - b[j2] * x[j2];
+
+ xmax = 0.;
+ i__1 = j1 - 1;
+ for (k = 1; k <= i__1; ++k) {
+/* Computing MAX */
+ d__3 = (d__1 = x[k], abs(d__1)) + (d__2 = x[k + *
+ n], abs(d__2));
+ xmax = max(d__3,xmax);
+/* L60: */
+ }
+ }
+
+ }
+L70:
+ ;
+ }
+
+ } else {
+
+/* Solve (T + iB)'*(p+iq) = c+id */
+
+ jnext = 1;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (j < jnext) {
+ goto L80;
+ }
+ j1 = j;
+ j2 = j;
+ jnext = j + 1;
+ if (j < *n) {
+ if (t[j + 1 + j * t_dim1] != 0.) {
+ j2 = j + 1;
+ jnext = j + 2;
+ }
+ }
+
+ if (j1 == j2) {
+
+/* 1 by 1 diagonal block */
+
+/* Scale if necessary to avoid overflow in forming the */
+/* right-hand side element by inner product. */
+
+ xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n], abs(
+ d__2));
+ if (xmax > 1.) {
+ rec = 1. / xmax;
+ if (work[j1] > (bignum - xj) * rec) {
+ dscal_(&n2, &rec, &x[1], &c__1);
+ *scale *= rec;
+ xmax *= rec;
+ }
+ }
+
+ i__2 = j1 - 1;
+ x[j1] -= ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &
+ c__1);
+ i__2 = j1 - 1;
+ x[*n + j1] -= ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[
+ *n + 1], &c__1);
+ if (j1 > 1) {
+ x[j1] -= b[j1] * x[*n + 1];
+ x[*n + j1] += b[j1] * x[1];
+ }
+ xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n], abs(
+ d__2));
+
+ z__ = *w;
+ if (j1 == 1) {
+ z__ = b[1];
+ }
+
+/* Scale if necessary to avoid overflow in */
+/* complex division */
+
+ tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1)) + abs(z__);
+ tmp = t[j1 + j1 * t_dim1];
+ if (tjj < sminw) {
+ tmp = sminw;
+ tjj = sminw;
+ *info = 1;
+ }
+
+ if (tjj < 1.) {
+ if (xj > bignum * tjj) {
+ rec = 1. / xj;
+ dscal_(&n2, &rec, &x[1], &c__1);
+ *scale *= rec;
+ xmax *= rec;
+ }
+ }
+ d__1 = -z__;
+ dladiv_(&x[j1], &x[*n + j1], &tmp, &d__1, &sr, &si);
+ x[j1] = sr;
+ x[j1 + *n] = si;
+/* Computing MAX */
+ d__3 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n],
+ abs(d__2));
+ xmax = max(d__3,xmax);
+
+ } else {
+
+/* 2 by 2 diagonal block */
+
+/* Scale if necessary to avoid overflow in forming the */
+/* right-hand side element by inner product. */
+
+/* Computing MAX */
+ d__5 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1],
+ abs(d__2)), d__6 = (d__3 = x[j2], abs(d__3)) + (
+ d__4 = x[*n + j2], abs(d__4));
+ xj = max(d__5,d__6);
+ if (xmax > 1.) {
+ rec = 1. / xmax;
+/* Computing MAX */
+ d__1 = work[j1], d__2 = work[j2];
+ if (max(d__1,d__2) > (bignum - xj) / xmax) {
+ dscal_(&n2, &rec, &x[1], &c__1);
+ *scale *= rec;
+ xmax *= rec;
+ }
+ }
+
+ i__2 = j1 - 1;
+ d__[0] = x[j1] - ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1,
+ &x[1], &c__1);
+ i__2 = j1 - 1;
+ d__[1] = x[j2] - ddot_(&i__2, &t[j2 * t_dim1 + 1], &c__1,
+ &x[1], &c__1);
+ i__2 = j1 - 1;
+ d__[2] = x[*n + j1] - ddot_(&i__2, &t[j1 * t_dim1 + 1], &
+ c__1, &x[*n + 1], &c__1);
+ i__2 = j1 - 1;
+ d__[3] = x[*n + j2] - ddot_(&i__2, &t[j2 * t_dim1 + 1], &
+ c__1, &x[*n + 1], &c__1);
+ d__[0] -= b[j1] * x[*n + 1];
+ d__[1] -= b[j2] * x[*n + 1];
+ d__[2] += b[j1] * x[1];
+ d__[3] += b[j2] * x[1];
+
+ dlaln2_(&c_true, &c__2, &c__2, &sminw, &c_b21, &t[j1 + j1
+ * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
+ c_b25, w, v, &c__2, &scaloc, &xnorm, &ierr);
+ if (ierr != 0) {
+ *info = 2;
+ }
+
+ if (scaloc != 1.) {
+ dscal_(&n2, &scaloc, &x[1], &c__1);
+ *scale = scaloc * *scale;
+ }
+ x[j1] = v[0];
+ x[j2] = v[1];
+ x[*n + j1] = v[2];
+ x[*n + j2] = v[3];
+/* Computing MAX */
+ d__5 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1],
+ abs(d__2)), d__6 = (d__3 = x[j2], abs(d__3)) + (
+ d__4 = x[*n + j2], abs(d__4)), d__5 = max(d__5,
+ d__6);
+ xmax = max(d__5,xmax);
+
+ }
+
+L80:
+ ;
+ }
+
+ }
+
+ }
+
+ return 0;
+
+/* End of DLAQTR */
+
+} /* dlaqtr_ */