aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dlanv2.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dlanv2.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dlanv2.c')
-rw-r--r--contrib/libs/clapack/dlanv2.c235
1 files changed, 235 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dlanv2.c b/contrib/libs/clapack/dlanv2.c
new file mode 100644
index 0000000000..14aa951fe6
--- /dev/null
+++ b/contrib/libs/clapack/dlanv2.c
@@ -0,0 +1,235 @@
+/* dlanv2.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublereal c_b4 = 1.;
+
+/* Subroutine */ int dlanv2_(doublereal *a, doublereal *b, doublereal *c__,
+ doublereal *d__, doublereal *rt1r, doublereal *rt1i, doublereal *rt2r,
+ doublereal *rt2i, doublereal *cs, doublereal *sn)
+{
+ /* System generated locals */
+ doublereal d__1, d__2;
+
+ /* Builtin functions */
+ double d_sign(doublereal *, doublereal *), sqrt(doublereal);
+
+ /* Local variables */
+ doublereal p, z__, aa, bb, cc, dd, cs1, sn1, sab, sac, eps, tau, temp,
+ scale, bcmax, bcmis, sigma;
+ extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *);
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric */
+/* matrix in standard form: */
+
+/* [ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ] */
+/* [ C D ] [ SN CS ] [ CC DD ] [-SN CS ] */
+
+/* where either */
+/* 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or */
+/* 2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex */
+/* conjugate eigenvalues. */
+
+/* Arguments */
+/* ========= */
+
+/* A (input/output) DOUBLE PRECISION */
+/* B (input/output) DOUBLE PRECISION */
+/* C (input/output) DOUBLE PRECISION */
+/* D (input/output) DOUBLE PRECISION */
+/* On entry, the elements of the input matrix. */
+/* On exit, they are overwritten by the elements of the */
+/* standardised Schur form. */
+
+/* RT1R (output) DOUBLE PRECISION */
+/* RT1I (output) DOUBLE PRECISION */
+/* RT2R (output) DOUBLE PRECISION */
+/* RT2I (output) DOUBLE PRECISION */
+/* The real and imaginary parts of the eigenvalues. If the */
+/* eigenvalues are a complex conjugate pair, RT1I > 0. */
+
+/* CS (output) DOUBLE PRECISION */
+/* SN (output) DOUBLE PRECISION */
+/* Parameters of the rotation matrix. */
+
+/* Further Details */
+/* =============== */
+
+/* Modified by V. Sima, Research Institute for Informatics, Bucharest, */
+/* Romania, to reduce the risk of cancellation errors, */
+/* when computing real eigenvalues, and to ensure, if possible, that */
+/* abs(RT1R) >= abs(RT2R). */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+ eps = dlamch_("P");
+ if (*c__ == 0.) {
+ *cs = 1.;
+ *sn = 0.;
+ goto L10;
+
+ } else if (*b == 0.) {
+
+/* Swap rows and columns */
+
+ *cs = 0.;
+ *sn = 1.;
+ temp = *d__;
+ *d__ = *a;
+ *a = temp;
+ *b = -(*c__);
+ *c__ = 0.;
+ goto L10;
+ } else if (*a - *d__ == 0. && d_sign(&c_b4, b) != d_sign(&c_b4, c__)) {
+ *cs = 1.;
+ *sn = 0.;
+ goto L10;
+ } else {
+
+ temp = *a - *d__;
+ p = temp * .5;
+/* Computing MAX */
+ d__1 = abs(*b), d__2 = abs(*c__);
+ bcmax = max(d__1,d__2);
+/* Computing MIN */
+ d__1 = abs(*b), d__2 = abs(*c__);
+ bcmis = min(d__1,d__2) * d_sign(&c_b4, b) * d_sign(&c_b4, c__);
+/* Computing MAX */
+ d__1 = abs(p);
+ scale = max(d__1,bcmax);
+ z__ = p / scale * p + bcmax / scale * bcmis;
+
+/* If Z is of the order of the machine accuracy, postpone the */
+/* decision on the nature of eigenvalues */
+
+ if (z__ >= eps * 4.) {
+
+/* Real eigenvalues. Compute A and D. */
+
+ d__1 = sqrt(scale) * sqrt(z__);
+ z__ = p + d_sign(&d__1, &p);
+ *a = *d__ + z__;
+ *d__ -= bcmax / z__ * bcmis;
+
+/* Compute B and the rotation matrix */
+
+ tau = dlapy2_(c__, &z__);
+ *cs = z__ / tau;
+ *sn = *c__ / tau;
+ *b -= *c__;
+ *c__ = 0.;
+ } else {
+
+/* Complex eigenvalues, or real (almost) equal eigenvalues. */
+/* Make diagonal elements equal. */
+
+ sigma = *b + *c__;
+ tau = dlapy2_(&sigma, &temp);
+ *cs = sqrt((abs(sigma) / tau + 1.) * .5);
+ *sn = -(p / (tau * *cs)) * d_sign(&c_b4, &sigma);
+
+/* Compute [ AA BB ] = [ A B ] [ CS -SN ] */
+/* [ CC DD ] [ C D ] [ SN CS ] */
+
+ aa = *a * *cs + *b * *sn;
+ bb = -(*a) * *sn + *b * *cs;
+ cc = *c__ * *cs + *d__ * *sn;
+ dd = -(*c__) * *sn + *d__ * *cs;
+
+/* Compute [ A B ] = [ CS SN ] [ AA BB ] */
+/* [ C D ] [-SN CS ] [ CC DD ] */
+
+ *a = aa * *cs + cc * *sn;
+ *b = bb * *cs + dd * *sn;
+ *c__ = -aa * *sn + cc * *cs;
+ *d__ = -bb * *sn + dd * *cs;
+
+ temp = (*a + *d__) * .5;
+ *a = temp;
+ *d__ = temp;
+
+ if (*c__ != 0.) {
+ if (*b != 0.) {
+ if (d_sign(&c_b4, b) == d_sign(&c_b4, c__)) {
+
+/* Real eigenvalues: reduce to upper triangular form */
+
+ sab = sqrt((abs(*b)));
+ sac = sqrt((abs(*c__)));
+ d__1 = sab * sac;
+ p = d_sign(&d__1, c__);
+ tau = 1. / sqrt((d__1 = *b + *c__, abs(d__1)));
+ *a = temp + p;
+ *d__ = temp - p;
+ *b -= *c__;
+ *c__ = 0.;
+ cs1 = sab * tau;
+ sn1 = sac * tau;
+ temp = *cs * cs1 - *sn * sn1;
+ *sn = *cs * sn1 + *sn * cs1;
+ *cs = temp;
+ }
+ } else {
+ *b = -(*c__);
+ *c__ = 0.;
+ temp = *cs;
+ *cs = -(*sn);
+ *sn = temp;
+ }
+ }
+ }
+
+ }
+
+L10:
+
+/* Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I). */
+
+ *rt1r = *a;
+ *rt2r = *d__;
+ if (*c__ == 0.) {
+ *rt1i = 0.;
+ *rt2i = 0.;
+ } else {
+ *rt1i = sqrt((abs(*b))) * sqrt((abs(*c__)));
+ *rt2i = -(*rt1i);
+ }
+ return 0;
+
+/* End of DLANV2 */
+
+} /* dlanv2_ */