aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dlantr.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dlantr.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dlantr.c')
-rw-r--r--contrib/libs/clapack/dlantr.c398
1 files changed, 398 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dlantr.c b/contrib/libs/clapack/dlantr.c
new file mode 100644
index 0000000000..cc28cde570
--- /dev/null
+++ b/contrib/libs/clapack/dlantr.c
@@ -0,0 +1,398 @@
+/* dlantr.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+
+doublereal dlantr_(char *norm, char *uplo, char *diag, integer *m, integer *n,
+ doublereal *a, integer *lda, doublereal *work)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
+ doublereal ret_val, d__1, d__2, d__3;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer i__, j;
+ doublereal sum, scale;
+ logical udiag;
+ extern logical lsame_(char *, char *);
+ doublereal value;
+ extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *,
+ doublereal *, doublereal *);
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DLANTR returns the value of the one norm, or the Frobenius norm, or */
+/* the infinity norm, or the element of largest absolute value of a */
+/* trapezoidal or triangular matrix A. */
+
+/* Description */
+/* =========== */
+
+/* DLANTR returns the value */
+
+/* DLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
+/* ( */
+/* ( norm1(A), NORM = '1', 'O' or 'o' */
+/* ( */
+/* ( normI(A), NORM = 'I' or 'i' */
+/* ( */
+/* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
+
+/* where norm1 denotes the one norm of a matrix (maximum column sum), */
+/* normI denotes the infinity norm of a matrix (maximum row sum) and */
+/* normF denotes the Frobenius norm of a matrix (square root of sum of */
+/* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */
+
+/* Arguments */
+/* ========= */
+
+/* NORM (input) CHARACTER*1 */
+/* Specifies the value to be returned in DLANTR as described */
+/* above. */
+
+/* UPLO (input) CHARACTER*1 */
+/* Specifies whether the matrix A is upper or lower trapezoidal. */
+/* = 'U': Upper trapezoidal */
+/* = 'L': Lower trapezoidal */
+/* Note that A is triangular instead of trapezoidal if M = N. */
+
+/* DIAG (input) CHARACTER*1 */
+/* Specifies whether or not the matrix A has unit diagonal. */
+/* = 'N': Non-unit diagonal */
+/* = 'U': Unit diagonal */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix A. M >= 0, and if */
+/* UPLO = 'U', M <= N. When M = 0, DLANTR is set to zero. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrix A. N >= 0, and if */
+/* UPLO = 'L', N <= M. When N = 0, DLANTR is set to zero. */
+
+/* A (input) DOUBLE PRECISION array, dimension (LDA,N) */
+/* The trapezoidal matrix A (A is triangular if M = N). */
+/* If UPLO = 'U', the leading m by n upper trapezoidal part of */
+/* the array A contains the upper trapezoidal matrix, and the */
+/* strictly lower triangular part of A is not referenced. */
+/* If UPLO = 'L', the leading m by n lower trapezoidal part of */
+/* the array A contains the lower trapezoidal matrix, and the */
+/* strictly upper triangular part of A is not referenced. Note */
+/* that when DIAG = 'U', the diagonal elements of A are not */
+/* referenced and are assumed to be one. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(M,1). */
+
+/* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */
+/* where LWORK >= M when NORM = 'I'; otherwise, WORK is not */
+/* referenced. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --work;
+
+ /* Function Body */
+ if (min(*m,*n) == 0) {
+ value = 0.;
+ } else if (lsame_(norm, "M")) {
+
+/* Find max(abs(A(i,j))). */
+
+ if (lsame_(diag, "U")) {
+ value = 1.;
+ if (lsame_(uplo, "U")) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MIN */
+ i__3 = *m, i__4 = j - 1;
+ i__2 = min(i__3,i__4);
+ for (i__ = 1; i__ <= i__2; ++i__) {
+/* Computing MAX */
+ d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(
+ d__1));
+ value = max(d__2,d__3);
+/* L10: */
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+/* Computing MAX */
+ d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(
+ d__1));
+ value = max(d__2,d__3);
+/* L30: */
+ }
+/* L40: */
+ }
+ }
+ } else {
+ value = 0.;
+ if (lsame_(uplo, "U")) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = min(*m,j);
+ for (i__ = 1; i__ <= i__2; ++i__) {
+/* Computing MAX */
+ d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(
+ d__1));
+ value = max(d__2,d__3);
+/* L50: */
+ }
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = j; i__ <= i__2; ++i__) {
+/* Computing MAX */
+ d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(
+ d__1));
+ value = max(d__2,d__3);
+/* L70: */
+ }
+/* L80: */
+ }
+ }
+ }
+ } else if (lsame_(norm, "O") || *(unsigned char *)
+ norm == '1') {
+
+/* Find norm1(A). */
+
+ value = 0.;
+ udiag = lsame_(diag, "U");
+ if (lsame_(uplo, "U")) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (udiag && j <= *m) {
+ sum = 1.;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ sum += (d__1 = a[i__ + j * a_dim1], abs(d__1));
+/* L90: */
+ }
+ } else {
+ sum = 0.;
+ i__2 = min(*m,j);
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ sum += (d__1 = a[i__ + j * a_dim1], abs(d__1));
+/* L100: */
+ }
+ }
+ value = max(value,sum);
+/* L110: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (udiag) {
+ sum = 1.;
+ i__2 = *m;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ sum += (d__1 = a[i__ + j * a_dim1], abs(d__1));
+/* L120: */
+ }
+ } else {
+ sum = 0.;
+ i__2 = *m;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ sum += (d__1 = a[i__ + j * a_dim1], abs(d__1));
+/* L130: */
+ }
+ }
+ value = max(value,sum);
+/* L140: */
+ }
+ }
+ } else if (lsame_(norm, "I")) {
+
+/* Find normI(A). */
+
+ if (lsame_(uplo, "U")) {
+ if (lsame_(diag, "U")) {
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ work[i__] = 1.;
+/* L150: */
+ }
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MIN */
+ i__3 = *m, i__4 = j - 1;
+ i__2 = min(i__3,i__4);
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));
+/* L160: */
+ }
+/* L170: */
+ }
+ } else {
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ work[i__] = 0.;
+/* L180: */
+ }
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = min(*m,j);
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));
+/* L190: */
+ }
+/* L200: */
+ }
+ }
+ } else {
+ if (lsame_(diag, "U")) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ work[i__] = 1.;
+/* L210: */
+ }
+ i__1 = *m;
+ for (i__ = *n + 1; i__ <= i__1; ++i__) {
+ work[i__] = 0.;
+/* L220: */
+ }
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));
+/* L230: */
+ }
+/* L240: */
+ }
+ } else {
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ work[i__] = 0.;
+/* L250: */
+ }
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));
+/* L260: */
+ }
+/* L270: */
+ }
+ }
+ }
+ value = 0.;
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+/* Computing MAX */
+ d__1 = value, d__2 = work[i__];
+ value = max(d__1,d__2);
+/* L280: */
+ }
+ } else if (lsame_(norm, "F") || lsame_(norm, "E")) {
+
+/* Find normF(A). */
+
+ if (lsame_(uplo, "U")) {
+ if (lsame_(diag, "U")) {
+ scale = 1.;
+ sum = (doublereal) min(*m,*n);
+ i__1 = *n;
+ for (j = 2; j <= i__1; ++j) {
+/* Computing MIN */
+ i__3 = *m, i__4 = j - 1;
+ i__2 = min(i__3,i__4);
+ dlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
+/* L290: */
+ }
+ } else {
+ scale = 0.;
+ sum = 1.;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = min(*m,j);
+ dlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
+/* L300: */
+ }
+ }
+ } else {
+ if (lsame_(diag, "U")) {
+ scale = 1.;
+ sum = (doublereal) min(*m,*n);
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m - j;
+/* Computing MIN */
+ i__3 = *m, i__4 = j + 1;
+ dlassq_(&i__2, &a[min(i__3, i__4)+ j * a_dim1], &c__1, &
+ scale, &sum);
+/* L310: */
+ }
+ } else {
+ scale = 0.;
+ sum = 1.;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m - j + 1;
+ dlassq_(&i__2, &a[j + j * a_dim1], &c__1, &scale, &sum);
+/* L320: */
+ }
+ }
+ }
+ value = scale * sqrt(sum);
+ }
+
+ ret_val = value;
+ return ret_val;
+
+/* End of DLANTR */
+
+} /* dlantr_ */