diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dlansy.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dlansy.c')
-rw-r--r-- | contrib/libs/clapack/dlansy.c | 239 |
1 files changed, 239 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dlansy.c b/contrib/libs/clapack/dlansy.c new file mode 100644 index 0000000000..58d5c30e22 --- /dev/null +++ b/contrib/libs/clapack/dlansy.c @@ -0,0 +1,239 @@ +/* dlansy.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; + +doublereal dlansy_(char *norm, char *uplo, integer *n, doublereal *a, integer + *lda, doublereal *work) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + doublereal ret_val, d__1, d__2, d__3; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + integer i__, j; + doublereal sum, absa, scale; + extern logical lsame_(char *, char *); + doublereal value; + extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *, + doublereal *, doublereal *); + + +/* -- LAPACK auxiliary routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DLANSY returns the value of the one norm, or the Frobenius norm, or */ +/* the infinity norm, or the element of largest absolute value of a */ +/* real symmetric matrix A. */ + +/* Description */ +/* =========== */ + +/* DLANSY returns the value */ + +/* DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm' */ +/* ( */ +/* ( norm1(A), NORM = '1', 'O' or 'o' */ +/* ( */ +/* ( normI(A), NORM = 'I' or 'i' */ +/* ( */ +/* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */ + +/* where norm1 denotes the one norm of a matrix (maximum column sum), */ +/* normI denotes the infinity norm of a matrix (maximum row sum) and */ +/* normF denotes the Frobenius norm of a matrix (square root of sum of */ +/* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */ + +/* Arguments */ +/* ========= */ + +/* NORM (input) CHARACTER*1 */ +/* Specifies the value to be returned in DLANSY as described */ +/* above. */ + +/* UPLO (input) CHARACTER*1 */ +/* Specifies whether the upper or lower triangular part of the */ +/* symmetric matrix A is to be referenced. */ +/* = 'U': Upper triangular part of A is referenced */ +/* = 'L': Lower triangular part of A is referenced */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. When N = 0, DLANSY is */ +/* set to zero. */ + +/* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ +/* The symmetric matrix A. If UPLO = 'U', the leading n by n */ +/* upper triangular part of A contains the upper triangular part */ +/* of the matrix A, and the strictly lower triangular part of A */ +/* is not referenced. If UPLO = 'L', the leading n by n lower */ +/* triangular part of A contains the lower triangular part of */ +/* the matrix A, and the strictly upper triangular part of A is */ +/* not referenced. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(N,1). */ + +/* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */ +/* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, */ +/* WORK is not referenced. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --work; + + /* Function Body */ + if (*n == 0) { + value = 0.; + } else if (lsame_(norm, "M")) { + +/* Find max(abs(A(i,j))). */ + + value = 0.; + if (lsame_(uplo, "U")) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { +/* Computing MAX */ + d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs( + d__1)); + value = max(d__2,d__3); +/* L10: */ + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { +/* Computing MAX */ + d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs( + d__1)); + value = max(d__2,d__3); +/* L30: */ + } +/* L40: */ + } + } + } else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') { + +/* Find normI(A) ( = norm1(A), since A is symmetric). */ + + value = 0.; + if (lsame_(uplo, "U")) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + sum = 0.; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + absa = (d__1 = a[i__ + j * a_dim1], abs(d__1)); + sum += absa; + work[i__] += absa; +/* L50: */ + } + work[j] = sum + (d__1 = a[j + j * a_dim1], abs(d__1)); +/* L60: */ + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { +/* Computing MAX */ + d__1 = value, d__2 = work[i__]; + value = max(d__1,d__2); +/* L70: */ + } + } else { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + work[i__] = 0.; +/* L80: */ + } + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + sum = work[j] + (d__1 = a[j + j * a_dim1], abs(d__1)); + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + absa = (d__1 = a[i__ + j * a_dim1], abs(d__1)); + sum += absa; + work[i__] += absa; +/* L90: */ + } + value = max(value,sum); +/* L100: */ + } + } + } else if (lsame_(norm, "F") || lsame_(norm, "E")) { + +/* Find normF(A). */ + + scale = 0.; + sum = 1.; + if (lsame_(uplo, "U")) { + i__1 = *n; + for (j = 2; j <= i__1; ++j) { + i__2 = j - 1; + dlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum); +/* L110: */ + } + } else { + i__1 = *n - 1; + for (j = 1; j <= i__1; ++j) { + i__2 = *n - j; + dlassq_(&i__2, &a[j + 1 + j * a_dim1], &c__1, &scale, &sum); +/* L120: */ + } + } + sum *= 2; + i__1 = *lda + 1; + dlassq_(n, &a[a_offset], &i__1, &scale, &sum); + value = scale * sqrt(sum); + } + + ret_val = value; + return ret_val; + +/* End of DLANSY */ + +} /* dlansy_ */ |