aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dlagtm.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dlagtm.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dlagtm.c')
-rw-r--r--contrib/libs/clapack/dlagtm.c254
1 files changed, 254 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dlagtm.c b/contrib/libs/clapack/dlagtm.c
new file mode 100644
index 0000000000..4cd922674b
--- /dev/null
+++ b/contrib/libs/clapack/dlagtm.c
@@ -0,0 +1,254 @@
+/* dlagtm.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int dlagtm_(char *trans, integer *n, integer *nrhs,
+ doublereal *alpha, doublereal *dl, doublereal *d__, doublereal *du,
+ doublereal *x, integer *ldx, doublereal *beta, doublereal *b, integer
+ *ldb)
+{
+ /* System generated locals */
+ integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2;
+
+ /* Local variables */
+ integer i__, j;
+ extern logical lsame_(char *, char *);
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DLAGTM performs a matrix-vector product of the form */
+
+/* B := alpha * A * X + beta * B */
+
+/* where A is a tridiagonal matrix of order N, B and X are N by NRHS */
+/* matrices, and alpha and beta are real scalars, each of which may be */
+/* 0., 1., or -1. */
+
+/* Arguments */
+/* ========= */
+
+/* TRANS (input) CHARACTER*1 */
+/* Specifies the operation applied to A. */
+/* = 'N': No transpose, B := alpha * A * X + beta * B */
+/* = 'T': Transpose, B := alpha * A'* X + beta * B */
+/* = 'C': Conjugate transpose = Transpose */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* NRHS (input) INTEGER */
+/* The number of right hand sides, i.e., the number of columns */
+/* of the matrices X and B. */
+
+/* ALPHA (input) DOUBLE PRECISION */
+/* The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise, */
+/* it is assumed to be 0. */
+
+/* DL (input) DOUBLE PRECISION array, dimension (N-1) */
+/* The (n-1) sub-diagonal elements of T. */
+
+/* D (input) DOUBLE PRECISION array, dimension (N) */
+/* The diagonal elements of T. */
+
+/* DU (input) DOUBLE PRECISION array, dimension (N-1) */
+/* The (n-1) super-diagonal elements of T. */
+
+/* X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */
+/* The N by NRHS matrix X. */
+/* LDX (input) INTEGER */
+/* The leading dimension of the array X. LDX >= max(N,1). */
+
+/* BETA (input) DOUBLE PRECISION */
+/* The scalar beta. BETA must be 0., 1., or -1.; otherwise, */
+/* it is assumed to be 1. */
+
+/* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
+/* On entry, the N by NRHS matrix B. */
+/* On exit, B is overwritten by the matrix expression */
+/* B := alpha * A * X + beta * B. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(N,1). */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+ /* Parameter adjustments */
+ --dl;
+ --d__;
+ --du;
+ x_dim1 = *ldx;
+ x_offset = 1 + x_dim1;
+ x -= x_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Function Body */
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Multiply B by BETA if BETA.NE.1. */
+
+ if (*beta == 0.) {
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = 0.;
+/* L10: */
+ }
+/* L20: */
+ }
+ } else if (*beta == -1.) {
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = -b[i__ + j * b_dim1];
+/* L30: */
+ }
+/* L40: */
+ }
+ }
+
+ if (*alpha == 1.) {
+ if (lsame_(trans, "N")) {
+
+/* Compute B := B + A*X */
+
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ if (*n == 1) {
+ b[j * b_dim1 + 1] += d__[1] * x[j * x_dim1 + 1];
+ } else {
+ b[j * b_dim1 + 1] = b[j * b_dim1 + 1] + d__[1] * x[j *
+ x_dim1 + 1] + du[1] * x[j * x_dim1 + 2];
+ b[*n + j * b_dim1] = b[*n + j * b_dim1] + dl[*n - 1] * x[*
+ n - 1 + j * x_dim1] + d__[*n] * x[*n + j * x_dim1]
+ ;
+ i__2 = *n - 1;
+ for (i__ = 2; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = b[i__ + j * b_dim1] + dl[i__ -
+ 1] * x[i__ - 1 + j * x_dim1] + d__[i__] * x[
+ i__ + j * x_dim1] + du[i__] * x[i__ + 1 + j *
+ x_dim1];
+/* L50: */
+ }
+ }
+/* L60: */
+ }
+ } else {
+
+/* Compute B := B + A'*X */
+
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ if (*n == 1) {
+ b[j * b_dim1 + 1] += d__[1] * x[j * x_dim1 + 1];
+ } else {
+ b[j * b_dim1 + 1] = b[j * b_dim1 + 1] + d__[1] * x[j *
+ x_dim1 + 1] + dl[1] * x[j * x_dim1 + 2];
+ b[*n + j * b_dim1] = b[*n + j * b_dim1] + du[*n - 1] * x[*
+ n - 1 + j * x_dim1] + d__[*n] * x[*n + j * x_dim1]
+ ;
+ i__2 = *n - 1;
+ for (i__ = 2; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = b[i__ + j * b_dim1] + du[i__ -
+ 1] * x[i__ - 1 + j * x_dim1] + d__[i__] * x[
+ i__ + j * x_dim1] + dl[i__] * x[i__ + 1 + j *
+ x_dim1];
+/* L70: */
+ }
+ }
+/* L80: */
+ }
+ }
+ } else if (*alpha == -1.) {
+ if (lsame_(trans, "N")) {
+
+/* Compute B := B - A*X */
+
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ if (*n == 1) {
+ b[j * b_dim1 + 1] -= d__[1] * x[j * x_dim1 + 1];
+ } else {
+ b[j * b_dim1 + 1] = b[j * b_dim1 + 1] - d__[1] * x[j *
+ x_dim1 + 1] - du[1] * x[j * x_dim1 + 2];
+ b[*n + j * b_dim1] = b[*n + j * b_dim1] - dl[*n - 1] * x[*
+ n - 1 + j * x_dim1] - d__[*n] * x[*n + j * x_dim1]
+ ;
+ i__2 = *n - 1;
+ for (i__ = 2; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = b[i__ + j * b_dim1] - dl[i__ -
+ 1] * x[i__ - 1 + j * x_dim1] - d__[i__] * x[
+ i__ + j * x_dim1] - du[i__] * x[i__ + 1 + j *
+ x_dim1];
+/* L90: */
+ }
+ }
+/* L100: */
+ }
+ } else {
+
+/* Compute B := B - A'*X */
+
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ if (*n == 1) {
+ b[j * b_dim1 + 1] -= d__[1] * x[j * x_dim1 + 1];
+ } else {
+ b[j * b_dim1 + 1] = b[j * b_dim1 + 1] - d__[1] * x[j *
+ x_dim1 + 1] - dl[1] * x[j * x_dim1 + 2];
+ b[*n + j * b_dim1] = b[*n + j * b_dim1] - du[*n - 1] * x[*
+ n - 1 + j * x_dim1] - d__[*n] * x[*n + j * x_dim1]
+ ;
+ i__2 = *n - 1;
+ for (i__ = 2; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = b[i__ + j * b_dim1] - du[i__ -
+ 1] * x[i__ - 1 + j * x_dim1] - d__[i__] * x[
+ i__ + j * x_dim1] - dl[i__] * x[i__ + 1 + j *
+ x_dim1];
+/* L110: */
+ }
+ }
+/* L120: */
+ }
+ }
+ }
+ return 0;
+
+/* End of DLAGTM */
+
+} /* dlagtm_ */