diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dlaeda.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dlaeda.c')
-rw-r--r-- | contrib/libs/clapack/dlaeda.c | 287 |
1 files changed, 287 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dlaeda.c b/contrib/libs/clapack/dlaeda.c new file mode 100644 index 0000000000..f9d8536bea --- /dev/null +++ b/contrib/libs/clapack/dlaeda.c @@ -0,0 +1,287 @@ +/* dlaeda.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__2 = 2; +static integer c__1 = 1; +static doublereal c_b24 = 1.; +static doublereal c_b26 = 0.; + +/* Subroutine */ int dlaeda_(integer *n, integer *tlvls, integer *curlvl, + integer *curpbm, integer *prmptr, integer *perm, integer *givptr, + integer *givcol, doublereal *givnum, doublereal *q, integer *qptr, + doublereal *z__, doublereal *ztemp, integer *info) +{ + /* System generated locals */ + integer i__1, i__2, i__3; + + /* Builtin functions */ + integer pow_ii(integer *, integer *); + double sqrt(doublereal); + + /* Local variables */ + integer i__, k, mid, ptr; + extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, + doublereal *, integer *, doublereal *, doublereal *); + integer curr, bsiz1, bsiz2, psiz1, psiz2, zptr1; + extern /* Subroutine */ int dgemv_(char *, integer *, integer *, + doublereal *, doublereal *, integer *, doublereal *, integer *, + doublereal *, doublereal *, integer *), dcopy_(integer *, + doublereal *, integer *, doublereal *, integer *), xerbla_(char *, + integer *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DLAEDA computes the Z vector corresponding to the merge step in the */ +/* CURLVLth step of the merge process with TLVLS steps for the CURPBMth */ +/* problem. */ + +/* Arguments */ +/* ========= */ + +/* N (input) INTEGER */ +/* The dimension of the symmetric tridiagonal matrix. N >= 0. */ + +/* TLVLS (input) INTEGER */ +/* The total number of merging levels in the overall divide and */ +/* conquer tree. */ + +/* CURLVL (input) INTEGER */ +/* The current level in the overall merge routine, */ +/* 0 <= curlvl <= tlvls. */ + +/* CURPBM (input) INTEGER */ +/* The current problem in the current level in the overall */ +/* merge routine (counting from upper left to lower right). */ + +/* PRMPTR (input) INTEGER array, dimension (N lg N) */ +/* Contains a list of pointers which indicate where in PERM a */ +/* level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) */ +/* indicates the size of the permutation and incidentally the */ +/* size of the full, non-deflated problem. */ + +/* PERM (input) INTEGER array, dimension (N lg N) */ +/* Contains the permutations (from deflation and sorting) to be */ +/* applied to each eigenblock. */ + +/* GIVPTR (input) INTEGER array, dimension (N lg N) */ +/* Contains a list of pointers which indicate where in GIVCOL a */ +/* level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) */ +/* indicates the number of Givens rotations. */ + +/* GIVCOL (input) INTEGER array, dimension (2, N lg N) */ +/* Each pair of numbers indicates a pair of columns to take place */ +/* in a Givens rotation. */ + +/* GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N) */ +/* Each number indicates the S value to be used in the */ +/* corresponding Givens rotation. */ + +/* Q (input) DOUBLE PRECISION array, dimension (N**2) */ +/* Contains the square eigenblocks from previous levels, the */ +/* starting positions for blocks are given by QPTR. */ + +/* QPTR (input) INTEGER array, dimension (N+2) */ +/* Contains a list of pointers which indicate where in Q an */ +/* eigenblock is stored. SQRT( QPTR(i+1) - QPTR(i) ) indicates */ +/* the size of the block. */ + +/* Z (output) DOUBLE PRECISION array, dimension (N) */ +/* On output this vector contains the updating vector (the last */ +/* row of the first sub-eigenvector matrix and the first row of */ +/* the second sub-eigenvector matrix). */ + +/* ZTEMP (workspace) DOUBLE PRECISION array, dimension (N) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit. */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* Jeff Rutter, Computer Science Division, University of California */ +/* at Berkeley, USA */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + --ztemp; + --z__; + --qptr; + --q; + givnum -= 3; + givcol -= 3; + --givptr; + --perm; + --prmptr; + + /* Function Body */ + *info = 0; + + if (*n < 0) { + *info = -1; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("DLAEDA", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + +/* Determine location of first number in second half. */ + + mid = *n / 2 + 1; + +/* Gather last/first rows of appropriate eigenblocks into center of Z */ + + ptr = 1; + +/* Determine location of lowest level subproblem in the full storage */ +/* scheme */ + + i__1 = *curlvl - 1; + curr = ptr + *curpbm * pow_ii(&c__2, curlvl) + pow_ii(&c__2, &i__1) - 1; + +/* Determine size of these matrices. We add HALF to the value of */ +/* the SQRT in case the machine underestimates one of these square */ +/* roots. */ + + bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) + .5); + bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1])) + + .5); + i__1 = mid - bsiz1 - 1; + for (k = 1; k <= i__1; ++k) { + z__[k] = 0.; +/* L10: */ + } + dcopy_(&bsiz1, &q[qptr[curr] + bsiz1 - 1], &bsiz1, &z__[mid - bsiz1], & + c__1); + dcopy_(&bsiz2, &q[qptr[curr + 1]], &bsiz2, &z__[mid], &c__1); + i__1 = *n; + for (k = mid + bsiz2; k <= i__1; ++k) { + z__[k] = 0.; +/* L20: */ + } + +/* Loop thru remaining levels 1 -> CURLVL applying the Givens */ +/* rotations and permutation and then multiplying the center matrices */ +/* against the current Z. */ + + ptr = pow_ii(&c__2, tlvls) + 1; + i__1 = *curlvl - 1; + for (k = 1; k <= i__1; ++k) { + i__2 = *curlvl - k; + i__3 = *curlvl - k - 1; + curr = ptr + *curpbm * pow_ii(&c__2, &i__2) + pow_ii(&c__2, &i__3) - + 1; + psiz1 = prmptr[curr + 1] - prmptr[curr]; + psiz2 = prmptr[curr + 2] - prmptr[curr + 1]; + zptr1 = mid - psiz1; + +/* Apply Givens at CURR and CURR+1 */ + + i__2 = givptr[curr + 1] - 1; + for (i__ = givptr[curr]; i__ <= i__2; ++i__) { + drot_(&c__1, &z__[zptr1 + givcol[(i__ << 1) + 1] - 1], &c__1, & + z__[zptr1 + givcol[(i__ << 1) + 2] - 1], &c__1, &givnum[( + i__ << 1) + 1], &givnum[(i__ << 1) + 2]); +/* L30: */ + } + i__2 = givptr[curr + 2] - 1; + for (i__ = givptr[curr + 1]; i__ <= i__2; ++i__) { + drot_(&c__1, &z__[mid - 1 + givcol[(i__ << 1) + 1]], &c__1, &z__[ + mid - 1 + givcol[(i__ << 1) + 2]], &c__1, &givnum[(i__ << + 1) + 1], &givnum[(i__ << 1) + 2]); +/* L40: */ + } + psiz1 = prmptr[curr + 1] - prmptr[curr]; + psiz2 = prmptr[curr + 2] - prmptr[curr + 1]; + i__2 = psiz1 - 1; + for (i__ = 0; i__ <= i__2; ++i__) { + ztemp[i__ + 1] = z__[zptr1 + perm[prmptr[curr] + i__] - 1]; +/* L50: */ + } + i__2 = psiz2 - 1; + for (i__ = 0; i__ <= i__2; ++i__) { + ztemp[psiz1 + i__ + 1] = z__[mid + perm[prmptr[curr + 1] + i__] - + 1]; +/* L60: */ + } + +/* Multiply Blocks at CURR and CURR+1 */ + +/* Determine size of these matrices. We add HALF to the value of */ +/* the SQRT in case the machine underestimates one of these */ +/* square roots. */ + + bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) + + .5); + bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1]) + ) + .5); + if (bsiz1 > 0) { + dgemv_("T", &bsiz1, &bsiz1, &c_b24, &q[qptr[curr]], &bsiz1, & + ztemp[1], &c__1, &c_b26, &z__[zptr1], &c__1); + } + i__2 = psiz1 - bsiz1; + dcopy_(&i__2, &ztemp[bsiz1 + 1], &c__1, &z__[zptr1 + bsiz1], &c__1); + if (bsiz2 > 0) { + dgemv_("T", &bsiz2, &bsiz2, &c_b24, &q[qptr[curr + 1]], &bsiz2, & + ztemp[psiz1 + 1], &c__1, &c_b26, &z__[mid], &c__1); + } + i__2 = psiz2 - bsiz2; + dcopy_(&i__2, &ztemp[psiz1 + bsiz2 + 1], &c__1, &z__[mid + bsiz2], & + c__1); + + i__2 = *tlvls - k; + ptr += pow_ii(&c__2, &i__2); +/* L70: */ + } + + return 0; + +/* End of DLAEDA */ + +} /* dlaeda_ */ |