aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dgtts2.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dgtts2.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dgtts2.c')
-rw-r--r--contrib/libs/clapack/dgtts2.c261
1 files changed, 261 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dgtts2.c b/contrib/libs/clapack/dgtts2.c
new file mode 100644
index 0000000000..fce9cc8e8c
--- /dev/null
+++ b/contrib/libs/clapack/dgtts2.c
@@ -0,0 +1,261 @@
+/* dgtts2.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int dgtts2_(integer *itrans, integer *n, integer *nrhs,
+ doublereal *dl, doublereal *d__, doublereal *du, doublereal *du2,
+ integer *ipiv, doublereal *b, integer *ldb)
+{
+ /* System generated locals */
+ integer b_dim1, b_offset, i__1, i__2;
+
+ /* Local variables */
+ integer i__, j, ip;
+ doublereal temp;
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DGTTS2 solves one of the systems of equations */
+/* A*X = B or A'*X = B, */
+/* with a tridiagonal matrix A using the LU factorization computed */
+/* by DGTTRF. */
+
+/* Arguments */
+/* ========= */
+
+/* ITRANS (input) INTEGER */
+/* Specifies the form of the system of equations. */
+/* = 0: A * X = B (No transpose) */
+/* = 1: A'* X = B (Transpose) */
+/* = 2: A'* X = B (Conjugate transpose = Transpose) */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. */
+
+/* NRHS (input) INTEGER */
+/* The number of right hand sides, i.e., the number of columns */
+/* of the matrix B. NRHS >= 0. */
+
+/* DL (input) DOUBLE PRECISION array, dimension (N-1) */
+/* The (n-1) multipliers that define the matrix L from the */
+/* LU factorization of A. */
+
+/* D (input) DOUBLE PRECISION array, dimension (N) */
+/* The n diagonal elements of the upper triangular matrix U from */
+/* the LU factorization of A. */
+
+/* DU (input) DOUBLE PRECISION array, dimension (N-1) */
+/* The (n-1) elements of the first super-diagonal of U. */
+
+/* DU2 (input) DOUBLE PRECISION array, dimension (N-2) */
+/* The (n-2) elements of the second super-diagonal of U. */
+
+/* IPIV (input) INTEGER array, dimension (N) */
+/* The pivot indices; for 1 <= i <= n, row i of the matrix was */
+/* interchanged with row IPIV(i). IPIV(i) will always be either */
+/* i or i+1; IPIV(i) = i indicates a row interchange was not */
+/* required. */
+
+/* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
+/* On entry, the matrix of right hand side vectors B. */
+/* On exit, B is overwritten by the solution vectors X. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* ===================================================================== */
+
+/* .. Local Scalars .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Quick return if possible */
+
+ /* Parameter adjustments */
+ --dl;
+ --d__;
+ --du;
+ --du2;
+ --ipiv;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Function Body */
+ if (*n == 0 || *nrhs == 0) {
+ return 0;
+ }
+
+ if (*itrans == 0) {
+
+/* Solve A*X = B using the LU factorization of A, */
+/* overwriting each right hand side vector with its solution. */
+
+ if (*nrhs <= 1) {
+ j = 1;
+L10:
+
+/* Solve L*x = b. */
+
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ ip = ipiv[i__];
+ temp = b[i__ + 1 - ip + i__ + j * b_dim1] - dl[i__] * b[ip +
+ j * b_dim1];
+ b[i__ + j * b_dim1] = b[ip + j * b_dim1];
+ b[i__ + 1 + j * b_dim1] = temp;
+/* L20: */
+ }
+
+/* Solve U*x = b. */
+
+ b[*n + j * b_dim1] /= d__[*n];
+ if (*n > 1) {
+ b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n - 1]
+ * b[*n + j * b_dim1]) / d__[*n - 1];
+ }
+ for (i__ = *n - 2; i__ >= 1; --i__) {
+ b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[i__
+ + 1 + j * b_dim1] - du2[i__] * b[i__ + 2 + j * b_dim1]
+ ) / d__[i__];
+/* L30: */
+ }
+ if (j < *nrhs) {
+ ++j;
+ goto L10;
+ }
+ } else {
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Solve L*x = b. */
+
+ i__2 = *n - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ if (ipiv[i__] == i__) {
+ b[i__ + 1 + j * b_dim1] -= dl[i__] * b[i__ + j *
+ b_dim1];
+ } else {
+ temp = b[i__ + j * b_dim1];
+ b[i__ + j * b_dim1] = b[i__ + 1 + j * b_dim1];
+ b[i__ + 1 + j * b_dim1] = temp - dl[i__] * b[i__ + j *
+ b_dim1];
+ }
+/* L40: */
+ }
+
+/* Solve U*x = b. */
+
+ b[*n + j * b_dim1] /= d__[*n];
+ if (*n > 1) {
+ b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n
+ - 1] * b[*n + j * b_dim1]) / d__[*n - 1];
+ }
+ for (i__ = *n - 2; i__ >= 1; --i__) {
+ b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[
+ i__ + 1 + j * b_dim1] - du2[i__] * b[i__ + 2 + j *
+ b_dim1]) / d__[i__];
+/* L50: */
+ }
+/* L60: */
+ }
+ }
+ } else {
+
+/* Solve A' * X = B. */
+
+ if (*nrhs <= 1) {
+
+/* Solve U'*x = b. */
+
+ j = 1;
+L70:
+ b[j * b_dim1 + 1] /= d__[1];
+ if (*n > 1) {
+ b[j * b_dim1 + 2] = (b[j * b_dim1 + 2] - du[1] * b[j * b_dim1
+ + 1]) / d__[2];
+ }
+ i__1 = *n;
+ for (i__ = 3; i__ <= i__1; ++i__) {
+ b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__ - 1] * b[
+ i__ - 1 + j * b_dim1] - du2[i__ - 2] * b[i__ - 2 + j *
+ b_dim1]) / d__[i__];
+/* L80: */
+ }
+
+/* Solve L'*x = b. */
+
+ for (i__ = *n - 1; i__ >= 1; --i__) {
+ ip = ipiv[i__];
+ temp = b[i__ + j * b_dim1] - dl[i__] * b[i__ + 1 + j * b_dim1]
+ ;
+ b[i__ + j * b_dim1] = b[ip + j * b_dim1];
+ b[ip + j * b_dim1] = temp;
+/* L90: */
+ }
+ if (j < *nrhs) {
+ ++j;
+ goto L70;
+ }
+
+ } else {
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Solve U'*x = b. */
+
+ b[j * b_dim1 + 1] /= d__[1];
+ if (*n > 1) {
+ b[j * b_dim1 + 2] = (b[j * b_dim1 + 2] - du[1] * b[j *
+ b_dim1 + 1]) / d__[2];
+ }
+ i__2 = *n;
+ for (i__ = 3; i__ <= i__2; ++i__) {
+ b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__ - 1] *
+ b[i__ - 1 + j * b_dim1] - du2[i__ - 2] * b[i__ -
+ 2 + j * b_dim1]) / d__[i__];
+/* L100: */
+ }
+ for (i__ = *n - 1; i__ >= 1; --i__) {
+ if (ipiv[i__] == i__) {
+ b[i__ + j * b_dim1] -= dl[i__] * b[i__ + 1 + j *
+ b_dim1];
+ } else {
+ temp = b[i__ + 1 + j * b_dim1];
+ b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - dl[
+ i__] * temp;
+ b[i__ + j * b_dim1] = temp;
+ }
+/* L110: */
+ }
+/* L120: */
+ }
+ }
+ }
+
+/* End of DGTTS2 */
+
+ return 0;
+} /* dgtts2_ */