aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dggqrf.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dggqrf.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dggqrf.c')
-rw-r--r--contrib/libs/clapack/dggqrf.c267
1 files changed, 267 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dggqrf.c b/contrib/libs/clapack/dggqrf.c
new file mode 100644
index 0000000000..b75d005d06
--- /dev/null
+++ b/contrib/libs/clapack/dggqrf.c
@@ -0,0 +1,267 @@
+/* dggqrf.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c_n1 = -1;
+
+/* Subroutine */ int dggqrf_(integer *n, integer *m, integer *p, doublereal *
+ a, integer *lda, doublereal *taua, doublereal *b, integer *ldb,
+ doublereal *taub, doublereal *work, integer *lwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
+
+ /* Local variables */
+ integer nb, nb1, nb2, nb3, lopt;
+ extern /* Subroutine */ int dgeqrf_(integer *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, integer *, integer *),
+ dgerqf_(integer *, integer *, doublereal *, integer *, doublereal
+ *, doublereal *, integer *, integer *), xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *,
+ integer *, doublereal *, integer *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *, integer *);
+ integer lwkopt;
+ logical lquery;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DGGQRF computes a generalized QR factorization of an N-by-M matrix A */
+/* and an N-by-P matrix B: */
+
+/* A = Q*R, B = Q*T*Z, */
+
+/* where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal */
+/* matrix, and R and T assume one of the forms: */
+
+/* if N >= M, R = ( R11 ) M , or if N < M, R = ( R11 R12 ) N, */
+/* ( 0 ) N-M N M-N */
+/* M */
+
+/* where R11 is upper triangular, and */
+
+/* if N <= P, T = ( 0 T12 ) N, or if N > P, T = ( T11 ) N-P, */
+/* P-N N ( T21 ) P */
+/* P */
+
+/* where T12 or T21 is upper triangular. */
+
+/* In particular, if B is square and nonsingular, the GQR factorization */
+/* of A and B implicitly gives the QR factorization of inv(B)*A: */
+
+/* inv(B)*A = Z'*(inv(T)*R) */
+
+/* where inv(B) denotes the inverse of the matrix B, and Z' denotes the */
+/* transpose of the matrix Z. */
+
+/* Arguments */
+/* ========= */
+
+/* N (input) INTEGER */
+/* The number of rows of the matrices A and B. N >= 0. */
+
+/* M (input) INTEGER */
+/* The number of columns of the matrix A. M >= 0. */
+
+/* P (input) INTEGER */
+/* The number of columns of the matrix B. P >= 0. */
+
+/* A (input/output) DOUBLE PRECISION array, dimension (LDA,M) */
+/* On entry, the N-by-M matrix A. */
+/* On exit, the elements on and above the diagonal of the array */
+/* contain the min(N,M)-by-M upper trapezoidal matrix R (R is */
+/* upper triangular if N >= M); the elements below the diagonal, */
+/* with the array TAUA, represent the orthogonal matrix Q as a */
+/* product of min(N,M) elementary reflectors (see Further */
+/* Details). */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* TAUA (output) DOUBLE PRECISION array, dimension (min(N,M)) */
+/* The scalar factors of the elementary reflectors which */
+/* represent the orthogonal matrix Q (see Further Details). */
+
+/* B (input/output) DOUBLE PRECISION array, dimension (LDB,P) */
+/* On entry, the N-by-P matrix B. */
+/* On exit, if N <= P, the upper triangle of the subarray */
+/* B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; */
+/* if N > P, the elements on and above the (N-P)-th subdiagonal */
+/* contain the N-by-P upper trapezoidal matrix T; the remaining */
+/* elements, with the array TAUB, represent the orthogonal */
+/* matrix Z as a product of elementary reflectors (see Further */
+/* Details). */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* TAUB (output) DOUBLE PRECISION array, dimension (min(N,P)) */
+/* The scalar factors of the elementary reflectors which */
+/* represent the orthogonal matrix Z (see Further Details). */
+
+/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. LWORK >= max(1,N,M,P). */
+/* For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), */
+/* where NB1 is the optimal blocksize for the QR factorization */
+/* of an N-by-M matrix, NB2 is the optimal blocksize for the */
+/* RQ factorization of an N-by-P matrix, and NB3 is the optimal */
+/* blocksize for a call of DORMQR. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+
+/* Further Details */
+/* =============== */
+
+/* The matrix Q is represented as a product of elementary reflectors */
+
+/* Q = H(1) H(2) . . . H(k), where k = min(n,m). */
+
+/* Each H(i) has the form */
+
+/* H(i) = I - taua * v * v' */
+
+/* where taua is a real scalar, and v is a real vector with */
+/* v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), */
+/* and taua in TAUA(i). */
+/* To form Q explicitly, use LAPACK subroutine DORGQR. */
+/* To use Q to update another matrix, use LAPACK subroutine DORMQR. */
+
+/* The matrix Z is represented as a product of elementary reflectors */
+
+/* Z = H(1) H(2) . . . H(k), where k = min(n,p). */
+
+/* Each H(i) has the form */
+
+/* H(i) = I - taub * v * v' */
+
+/* where taub is a real scalar, and v is a real vector with */
+/* v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in */
+/* B(n-k+i,1:p-k+i-1), and taub in TAUB(i). */
+/* To form Z explicitly, use LAPACK subroutine DORGRQ. */
+/* To use Z to update another matrix, use LAPACK subroutine DORMRQ. */
+
+/* ===================================================================== */
+
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --taua;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ --taub;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ nb1 = ilaenv_(&c__1, "DGEQRF", " ", n, m, &c_n1, &c_n1);
+ nb2 = ilaenv_(&c__1, "DGERQF", " ", n, p, &c_n1, &c_n1);
+ nb3 = ilaenv_(&c__1, "DORMQR", " ", n, m, p, &c_n1);
+/* Computing MAX */
+ i__1 = max(nb1,nb2);
+ nb = max(i__1,nb3);
+/* Computing MAX */
+ i__1 = max(*n,*m);
+ lwkopt = max(i__1,*p) * nb;
+ work[1] = (doublereal) lwkopt;
+ lquery = *lwork == -1;
+ if (*n < 0) {
+ *info = -1;
+ } else if (*m < 0) {
+ *info = -2;
+ } else if (*p < 0) {
+ *info = -3;
+ } else if (*lda < max(1,*n)) {
+ *info = -5;
+ } else if (*ldb < max(1,*n)) {
+ *info = -8;
+ } else /* if(complicated condition) */ {
+/* Computing MAX */
+ i__1 = max(1,*n), i__1 = max(i__1,*m);
+ if (*lwork < max(i__1,*p) && ! lquery) {
+ *info = -11;
+ }
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DGGQRF", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* QR factorization of N-by-M matrix A: A = Q*R */
+
+ dgeqrf_(n, m, &a[a_offset], lda, &taua[1], &work[1], lwork, info);
+ lopt = (integer) work[1];
+
+/* Update B := Q'*B. */
+
+ i__1 = min(*n,*m);
+ dormqr_("Left", "Transpose", n, p, &i__1, &a[a_offset], lda, &taua[1], &b[
+ b_offset], ldb, &work[1], lwork, info);
+/* Computing MAX */
+ i__1 = lopt, i__2 = (integer) work[1];
+ lopt = max(i__1,i__2);
+
+/* RQ factorization of N-by-P matrix B: B = T*Z. */
+
+ dgerqf_(n, p, &b[b_offset], ldb, &taub[1], &work[1], lwork, info);
+/* Computing MAX */
+ i__1 = lopt, i__2 = (integer) work[1];
+ work[1] = (doublereal) max(i__1,i__2);
+
+ return 0;
+
+/* End of DGGQRF */
+
+} /* dggqrf_ */