aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dgbrfsx.c
diff options
context:
space:
mode:
authormaxim-yurchuk <maxim-yurchuk@yandex-team.com>2024-10-09 12:29:46 +0300
committermaxim-yurchuk <maxim-yurchuk@yandex-team.com>2024-10-09 13:14:22 +0300
commit9731d8a4bb7ee2cc8554eaf133bb85498a4c7d80 (patch)
treea8fb3181d5947c0d78cf402aa56e686130179049 /contrib/libs/clapack/dgbrfsx.c
parenta44b779cd359f06c3ebbef4ec98c6b38609d9d85 (diff)
downloadydb-9731d8a4bb7ee2cc8554eaf133bb85498a4c7d80.tar.gz
publishFullContrib: true for ydb
<HIDDEN_URL> commit_hash:c82a80ac4594723cebf2c7387dec9c60217f603e
Diffstat (limited to 'contrib/libs/clapack/dgbrfsx.c')
-rw-r--r--contrib/libs/clapack/dgbrfsx.c687
1 files changed, 687 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dgbrfsx.c b/contrib/libs/clapack/dgbrfsx.c
new file mode 100644
index 0000000000..73ab53fe05
--- /dev/null
+++ b/contrib/libs/clapack/dgbrfsx.c
@@ -0,0 +1,687 @@
+/* dgbrfsx.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c_n1 = -1;
+static integer c__0 = 0;
+static integer c__1 = 1;
+
+/* Subroutine */ int dgbrfsx_(char *trans, char *equed, integer *n, integer *
+ kl, integer *ku, integer *nrhs, doublereal *ab, integer *ldab,
+ doublereal *afb, integer *ldafb, integer *ipiv, doublereal *r__,
+ doublereal *c__, doublereal *b, integer *ldb, doublereal *x, integer *
+ ldx, doublereal *rcond, doublereal *berr, integer *n_err_bnds__,
+ doublereal *err_bnds_norm__, doublereal *err_bnds_comp__, integer *
+ nparams, doublereal *params, doublereal *work, integer *iwork,
+ integer *info)
+{
+ /* System generated locals */
+ integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset,
+ x_dim1, x_offset, err_bnds_norm_dim1, err_bnds_norm_offset,
+ err_bnds_comp_dim1, err_bnds_comp_offset, i__1;
+ doublereal d__1, d__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ doublereal illrcond_thresh__, unstable_thresh__, err_lbnd__;
+ integer ref_type__;
+ extern integer ilatrans_(char *);
+ integer j;
+ doublereal rcond_tmp__;
+ integer prec_type__, trans_type__;
+ extern doublereal dla_gbrcond__(char *, integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *, integer *, integer *,
+ integer *, doublereal *, integer *, doublereal *, integer *,
+ ftnlen);
+ doublereal cwise_wrong__;
+ extern /* Subroutine */ int dla_gbrfsx_extended__(integer *, integer *,
+ integer *, integer *, integer *, integer *, doublereal *, integer
+ *, doublereal *, integer *, integer *, logical *, doublereal *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *, doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *, integer *, doublereal *
+ , doublereal *, logical *, integer *);
+ char norm[1];
+ logical ignore_cwise__;
+ extern logical lsame_(char *, char *);
+ doublereal anorm;
+ extern doublereal dlangb_(char *, integer *, integer *, integer *,
+ doublereal *, integer *, doublereal *), dlamch_(char *);
+ extern /* Subroutine */ int dgbcon_(char *, integer *, integer *, integer
+ *, doublereal *, integer *, integer *, doublereal *, doublereal *,
+ doublereal *, integer *, integer *), xerbla_(char *,
+ integer *);
+ logical colequ, notran, rowequ;
+ extern integer ilaprec_(char *);
+ integer ithresh, n_norms__;
+ doublereal rthresh;
+
+
+/* -- LAPACK routine (version 3.2.1) -- */
+/* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
+/* -- Jason Riedy of Univ. of California Berkeley. -- */
+/* -- April 2009 -- */
+
+/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
+/* -- Univ. of California Berkeley and NAG Ltd. -- */
+
+/* .. */
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DGBRFSX improves the computed solution to a system of linear */
+/* equations and provides error bounds and backward error estimates */
+/* for the solution. In addition to normwise error bound, the code */
+/* provides maximum componentwise error bound if possible. See */
+/* comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the */
+/* error bounds. */
+
+/* The original system of linear equations may have been equilibrated */
+/* before calling this routine, as described by arguments EQUED, R */
+/* and C below. In this case, the solution and error bounds returned */
+/* are for the original unequilibrated system. */
+
+/* Arguments */
+/* ========= */
+
+/* Some optional parameters are bundled in the PARAMS array. These */
+/* settings determine how refinement is performed, but often the */
+/* defaults are acceptable. If the defaults are acceptable, users */
+/* can pass NPARAMS = 0 which prevents the source code from accessing */
+/* the PARAMS argument. */
+
+/* TRANS (input) CHARACTER*1 */
+/* Specifies the form of the system of equations: */
+/* = 'N': A * X = B (No transpose) */
+/* = 'T': A**T * X = B (Transpose) */
+/* = 'C': A**H * X = B (Conjugate transpose = Transpose) */
+
+/* EQUED (input) CHARACTER*1 */
+/* Specifies the form of equilibration that was done to A */
+/* before calling this routine. This is needed to compute */
+/* the solution and error bounds correctly. */
+/* = 'N': No equilibration */
+/* = 'R': Row equilibration, i.e., A has been premultiplied by */
+/* diag(R). */
+/* = 'C': Column equilibration, i.e., A has been postmultiplied */
+/* by diag(C). */
+/* = 'B': Both row and column equilibration, i.e., A has been */
+/* replaced by diag(R) * A * diag(C). */
+/* The right hand side B has been changed accordingly. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* KL (input) INTEGER */
+/* The number of subdiagonals within the band of A. KL >= 0. */
+
+/* KU (input) INTEGER */
+/* The number of superdiagonals within the band of A. KU >= 0. */
+
+/* NRHS (input) INTEGER */
+/* The number of right hand sides, i.e., the number of columns */
+/* of the matrices B and X. NRHS >= 0. */
+
+/* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */
+/* The original band matrix A, stored in rows 1 to KL+KU+1. */
+/* The j-th column of A is stored in the j-th column of the */
+/* array AB as follows: */
+/* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). */
+
+/* LDAB (input) INTEGER */
+/* The leading dimension of the array AB. LDAB >= KL+KU+1. */
+
+/* AFB (input) DOUBLE PRECISION array, dimension (LDAFB,N) */
+/* Details of the LU factorization of the band matrix A, as */
+/* computed by DGBTRF. U is stored as an upper triangular band */
+/* matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and */
+/* the multipliers used during the factorization are stored in */
+/* rows KL+KU+2 to 2*KL+KU+1. */
+
+/* LDAFB (input) INTEGER */
+/* The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1. */
+
+/* IPIV (input) INTEGER array, dimension (N) */
+/* The pivot indices from DGETRF; for 1<=i<=N, row i of the */
+/* matrix was interchanged with row IPIV(i). */
+
+/* R (input or output) DOUBLE PRECISION array, dimension (N) */
+/* The row scale factors for A. If EQUED = 'R' or 'B', A is */
+/* multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
+/* is not accessed. R is an input argument if FACT = 'F'; */
+/* otherwise, R is an output argument. If FACT = 'F' and */
+/* EQUED = 'R' or 'B', each element of R must be positive. */
+/* If R is output, each element of R is a power of the radix. */
+/* If R is input, each element of R should be a power of the radix */
+/* to ensure a reliable solution and error estimates. Scaling by */
+/* powers of the radix does not cause rounding errors unless the */
+/* result underflows or overflows. Rounding errors during scaling */
+/* lead to refining with a matrix that is not equivalent to the */
+/* input matrix, producing error estimates that may not be */
+/* reliable. */
+
+/* C (input or output) DOUBLE PRECISION array, dimension (N) */
+/* The column scale factors for A. If EQUED = 'C' or 'B', A is */
+/* multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
+/* is not accessed. C is an input argument if FACT = 'F'; */
+/* otherwise, C is an output argument. If FACT = 'F' and */
+/* EQUED = 'C' or 'B', each element of C must be positive. */
+/* If C is output, each element of C is a power of the radix. */
+/* If C is input, each element of C should be a power of the radix */
+/* to ensure a reliable solution and error estimates. Scaling by */
+/* powers of the radix does not cause rounding errors unless the */
+/* result underflows or overflows. Rounding errors during scaling */
+/* lead to refining with a matrix that is not equivalent to the */
+/* input matrix, producing error estimates that may not be */
+/* reliable. */
+
+/* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
+/* The right hand side matrix B. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
+/* On entry, the solution matrix X, as computed by DGETRS. */
+/* On exit, the improved solution matrix X. */
+
+/* LDX (input) INTEGER */
+/* The leading dimension of the array X. LDX >= max(1,N). */
+
+/* RCOND (output) DOUBLE PRECISION */
+/* Reciprocal scaled condition number. This is an estimate of the */
+/* reciprocal Skeel condition number of the matrix A after */
+/* equilibration (if done). If this is less than the machine */
+/* precision (in particular, if it is zero), the matrix is singular */
+/* to working precision. Note that the error may still be small even */
+/* if this number is very small and the matrix appears ill- */
+/* conditioned. */
+
+/* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */
+/* Componentwise relative backward error. This is the */
+/* componentwise relative backward error of each solution vector X(j) */
+/* (i.e., the smallest relative change in any element of A or B that */
+/* makes X(j) an exact solution). */
+
+/* N_ERR_BNDS (input) INTEGER */
+/* Number of error bounds to return for each right hand side */
+/* and each type (normwise or componentwise). See ERR_BNDS_NORM and */
+/* ERR_BNDS_COMP below. */
+
+/* ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
+/* For each right-hand side, this array contains information about */
+/* various error bounds and condition numbers corresponding to the */
+/* normwise relative error, which is defined as follows: */
+
+/* Normwise relative error in the ith solution vector: */
+/* max_j (abs(XTRUE(j,i) - X(j,i))) */
+/* ------------------------------ */
+/* max_j abs(X(j,i)) */
+
+/* The array is indexed by the type of error information as described */
+/* below. There currently are up to three pieces of information */
+/* returned. */
+
+/* The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
+/* right-hand side. */
+
+/* The second index in ERR_BNDS_NORM(:,err) contains the following */
+/* three fields: */
+/* err = 1 "Trust/don't trust" boolean. Trust the answer if the */
+/* reciprocal condition number is less than the threshold */
+/* sqrt(n) * dlamch('Epsilon'). */
+
+/* err = 2 "Guaranteed" error bound: The estimated forward error, */
+/* almost certainly within a factor of 10 of the true error */
+/* so long as the next entry is greater than the threshold */
+/* sqrt(n) * dlamch('Epsilon'). This error bound should only */
+/* be trusted if the previous boolean is true. */
+
+/* err = 3 Reciprocal condition number: Estimated normwise */
+/* reciprocal condition number. Compared with the threshold */
+/* sqrt(n) * dlamch('Epsilon') to determine if the error */
+/* estimate is "guaranteed". These reciprocal condition */
+/* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
+/* appropriately scaled matrix Z. */
+/* Let Z = S*A, where S scales each row by a power of the */
+/* radix so all absolute row sums of Z are approximately 1. */
+
+/* See Lapack Working Note 165 for further details and extra */
+/* cautions. */
+
+/* ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
+/* For each right-hand side, this array contains information about */
+/* various error bounds and condition numbers corresponding to the */
+/* componentwise relative error, which is defined as follows: */
+
+/* Componentwise relative error in the ith solution vector: */
+/* abs(XTRUE(j,i) - X(j,i)) */
+/* max_j ---------------------- */
+/* abs(X(j,i)) */
+
+/* The array is indexed by the right-hand side i (on which the */
+/* componentwise relative error depends), and the type of error */
+/* information as described below. There currently are up to three */
+/* pieces of information returned for each right-hand side. If */
+/* componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
+/* ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most */
+/* the first (:,N_ERR_BNDS) entries are returned. */
+
+/* The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
+/* right-hand side. */
+
+/* The second index in ERR_BNDS_COMP(:,err) contains the following */
+/* three fields: */
+/* err = 1 "Trust/don't trust" boolean. Trust the answer if the */
+/* reciprocal condition number is less than the threshold */
+/* sqrt(n) * dlamch('Epsilon'). */
+
+/* err = 2 "Guaranteed" error bound: The estimated forward error, */
+/* almost certainly within a factor of 10 of the true error */
+/* so long as the next entry is greater than the threshold */
+/* sqrt(n) * dlamch('Epsilon'). This error bound should only */
+/* be trusted if the previous boolean is true. */
+
+/* err = 3 Reciprocal condition number: Estimated componentwise */
+/* reciprocal condition number. Compared with the threshold */
+/* sqrt(n) * dlamch('Epsilon') to determine if the error */
+/* estimate is "guaranteed". These reciprocal condition */
+/* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
+/* appropriately scaled matrix Z. */
+/* Let Z = S*(A*diag(x)), where x is the solution for the */
+/* current right-hand side and S scales each row of */
+/* A*diag(x) by a power of the radix so all absolute row */
+/* sums of Z are approximately 1. */
+
+/* See Lapack Working Note 165 for further details and extra */
+/* cautions. */
+
+/* NPARAMS (input) INTEGER */
+/* Specifies the number of parameters set in PARAMS. If .LE. 0, the */
+/* PARAMS array is never referenced and default values are used. */
+
+/* PARAMS (input / output) DOUBLE PRECISION array, dimension NPARAMS */
+/* Specifies algorithm parameters. If an entry is .LT. 0.0, then */
+/* that entry will be filled with default value used for that */
+/* parameter. Only positions up to NPARAMS are accessed; defaults */
+/* are used for higher-numbered parameters. */
+
+/* PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */
+/* refinement or not. */
+/* Default: 1.0D+0 */
+/* = 0.0 : No refinement is performed, and no error bounds are */
+/* computed. */
+/* = 1.0 : Use the double-precision refinement algorithm, */
+/* possibly with doubled-single computations if the */
+/* compilation environment does not support DOUBLE */
+/* PRECISION. */
+/* (other values are reserved for future use) */
+
+/* PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */
+/* computations allowed for refinement. */
+/* Default: 10 */
+/* Aggressive: Set to 100 to permit convergence using approximate */
+/* factorizations or factorizations other than LU. If */
+/* the factorization uses a technique other than */
+/* Gaussian elimination, the guarantees in */
+/* err_bnds_norm and err_bnds_comp may no longer be */
+/* trustworthy. */
+
+/* PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */
+/* will attempt to find a solution with small componentwise */
+/* relative error in the double-precision algorithm. Positive */
+/* is true, 0.0 is false. */
+/* Default: 1.0 (attempt componentwise convergence) */
+
+/* WORK (workspace) DOUBLE PRECISION array, dimension (4*N) */
+
+/* IWORK (workspace) INTEGER array, dimension (N) */
+
+/* INFO (output) INTEGER */
+/* = 0: Successful exit. The solution to every right-hand side is */
+/* guaranteed. */
+/* < 0: If INFO = -i, the i-th argument had an illegal value */
+/* > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization */
+/* has been completed, but the factor U is exactly singular, so */
+/* the solution and error bounds could not be computed. RCOND = 0 */
+/* is returned. */
+/* = N+J: The solution corresponding to the Jth right-hand side is */
+/* not guaranteed. The solutions corresponding to other right- */
+/* hand sides K with K > J may not be guaranteed as well, but */
+/* only the first such right-hand side is reported. If a small */
+/* componentwise error is not requested (PARAMS(3) = 0.0) then */
+/* the Jth right-hand side is the first with a normwise error */
+/* bound that is not guaranteed (the smallest J such */
+/* that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */
+/* the Jth right-hand side is the first with either a normwise or */
+/* componentwise error bound that is not guaranteed (the smallest */
+/* J such that either ERR_BNDS_NORM(J,1) = 0.0 or */
+/* ERR_BNDS_COMP(J,1) = 0.0). See the definition of */
+/* ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */
+/* about all of the right-hand sides check ERR_BNDS_NORM or */
+/* ERR_BNDS_COMP. */
+
+/* ================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Check the input parameters. */
+
+ /* Parameter adjustments */
+ err_bnds_comp_dim1 = *nrhs;
+ err_bnds_comp_offset = 1 + err_bnds_comp_dim1;
+ err_bnds_comp__ -= err_bnds_comp_offset;
+ err_bnds_norm_dim1 = *nrhs;
+ err_bnds_norm_offset = 1 + err_bnds_norm_dim1;
+ err_bnds_norm__ -= err_bnds_norm_offset;
+ ab_dim1 = *ldab;
+ ab_offset = 1 + ab_dim1;
+ ab -= ab_offset;
+ afb_dim1 = *ldafb;
+ afb_offset = 1 + afb_dim1;
+ afb -= afb_offset;
+ --ipiv;
+ --r__;
+ --c__;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ x_dim1 = *ldx;
+ x_offset = 1 + x_dim1;
+ x -= x_offset;
+ --berr;
+ --params;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ *info = 0;
+ trans_type__ = ilatrans_(trans);
+ ref_type__ = 1;
+ if (*nparams >= 1) {
+ if (params[1] < 0.) {
+ params[1] = 1.;
+ } else {
+ ref_type__ = (integer) params[1];
+ }
+ }
+
+/* Set default parameters. */
+
+ illrcond_thresh__ = (doublereal) (*n) * dlamch_("Epsilon");
+ ithresh = 10;
+ rthresh = .5;
+ unstable_thresh__ = .25;
+ ignore_cwise__ = FALSE_;
+
+ if (*nparams >= 2) {
+ if (params[2] < 0.) {
+ params[2] = (doublereal) ithresh;
+ } else {
+ ithresh = (integer) params[2];
+ }
+ }
+ if (*nparams >= 3) {
+ if (params[3] < 0.) {
+ if (ignore_cwise__) {
+ params[3] = 0.;
+ } else {
+ params[3] = 1.;
+ }
+ } else {
+ ignore_cwise__ = params[3] == 0.;
+ }
+ }
+ if (ref_type__ == 0 || *n_err_bnds__ == 0) {
+ n_norms__ = 0;
+ } else if (ignore_cwise__) {
+ n_norms__ = 1;
+ } else {
+ n_norms__ = 2;
+ }
+
+ notran = lsame_(trans, "N");
+ rowequ = lsame_(equed, "R") || lsame_(equed, "B");
+ colequ = lsame_(equed, "C") || lsame_(equed, "B");
+
+/* Test input parameters. */
+
+ if (trans_type__ == -1) {
+ *info = -1;
+ } else if (! rowequ && ! colequ && ! lsame_(equed, "N")) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*kl < 0) {
+ *info = -4;
+ } else if (*ku < 0) {
+ *info = -5;
+ } else if (*nrhs < 0) {
+ *info = -6;
+ } else if (*ldab < *kl + *ku + 1) {
+ *info = -8;
+ } else if (*ldafb < (*kl << 1) + *ku + 1) {
+ *info = -10;
+ } else if (*ldb < max(1,*n)) {
+ *info = -13;
+ } else if (*ldx < max(1,*n)) {
+ *info = -15;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DGBRFSX", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0 || *nrhs == 0) {
+ *rcond = 1.;
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ berr[j] = 0.;
+ if (*n_err_bnds__ >= 1) {
+ err_bnds_norm__[j + err_bnds_norm_dim1] = 1.;
+ err_bnds_comp__[j + err_bnds_comp_dim1] = 1.;
+ } else if (*n_err_bnds__ >= 2) {
+ err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 0.;
+ err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 0.;
+ } else if (*n_err_bnds__ >= 3) {
+ err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 1.;
+ err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 1.;
+ }
+ }
+ return 0;
+ }
+
+/* Default to failure. */
+
+ *rcond = 0.;
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ berr[j] = 1.;
+ if (*n_err_bnds__ >= 1) {
+ err_bnds_norm__[j + err_bnds_norm_dim1] = 1.;
+ err_bnds_comp__[j + err_bnds_comp_dim1] = 1.;
+ } else if (*n_err_bnds__ >= 2) {
+ err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.;
+ err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.;
+ } else if (*n_err_bnds__ >= 3) {
+ err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 0.;
+ err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 0.;
+ }
+ }
+
+/* Compute the norm of A and the reciprocal of the condition */
+/* number of A. */
+
+ if (notran) {
+ *(unsigned char *)norm = 'I';
+ } else {
+ *(unsigned char *)norm = '1';
+ }
+ anorm = dlangb_(norm, n, kl, ku, &ab[ab_offset], ldab, &work[1]);
+ dgbcon_(norm, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], &anorm, rcond,
+ &work[1], &iwork[1], info);
+
+/* Perform refinement on each right-hand side */
+
+ if (ref_type__ != 0) {
+ prec_type__ = ilaprec_("E");
+ if (notran) {
+ dla_gbrfsx_extended__(&prec_type__, &trans_type__, n, kl, ku,
+ nrhs, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, &
+ ipiv[1], &colequ, &c__[1], &b[b_offset], ldb, &x[x_offset]
+ , ldx, &berr[1], &n_norms__, &err_bnds_norm__[
+ err_bnds_norm_offset], &err_bnds_comp__[
+ err_bnds_comp_offset], &work[*n + 1], &work[1], &work[(*n
+ << 1) + 1], &work[1], rcond, &ithresh, &rthresh, &
+ unstable_thresh__, &ignore_cwise__, info);
+ } else {
+ dla_gbrfsx_extended__(&prec_type__, &trans_type__, n, kl, ku,
+ nrhs, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, &
+ ipiv[1], &rowequ, &r__[1], &b[b_offset], ldb, &x[x_offset]
+ , ldx, &berr[1], &n_norms__, &err_bnds_norm__[
+ err_bnds_norm_offset], &err_bnds_comp__[
+ err_bnds_comp_offset], &work[*n + 1], &work[1], &work[(*n
+ << 1) + 1], &work[1], rcond, &ithresh, &rthresh, &
+ unstable_thresh__, &ignore_cwise__, info);
+ }
+ }
+/* Computing MAX */
+ d__1 = 10., d__2 = sqrt((doublereal) (*n));
+ err_lbnd__ = max(d__1,d__2) * dlamch_("Epsilon");
+ if (*n_err_bnds__ >= 1 && n_norms__ >= 1) {
+
+/* Compute scaled normwise condition number cond(A*C). */
+
+ if (colequ && notran) {
+ rcond_tmp__ = dla_gbrcond__(trans, n, kl, ku, &ab[ab_offset],
+ ldab, &afb[afb_offset], ldafb, &ipiv[1], &c_n1, &c__[1],
+ info, &work[1], &iwork[1], (ftnlen)1);
+ } else if (rowequ && ! notran) {
+ rcond_tmp__ = dla_gbrcond__(trans, n, kl, ku, &ab[ab_offset],
+ ldab, &afb[afb_offset], ldafb, &ipiv[1], &c_n1, &r__[1],
+ info, &work[1], &iwork[1], (ftnlen)1);
+ } else {
+ rcond_tmp__ = dla_gbrcond__(trans, n, kl, ku, &ab[ab_offset],
+ ldab, &afb[afb_offset], ldafb, &ipiv[1], &c__0, &r__[1],
+ info, &work[1], &iwork[1], (ftnlen)1);
+ }
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Cap the error at 1.0. */
+
+ if (*n_err_bnds__ >= 2 && err_bnds_norm__[j + (err_bnds_norm_dim1
+ << 1)] > 1.) {
+ err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.;
+ }
+
+/* Threshold the error (see LAWN). */
+
+ if (rcond_tmp__ < illrcond_thresh__) {
+ err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.;
+ err_bnds_norm__[j + err_bnds_norm_dim1] = 0.;
+ if (*info <= *n) {
+ *info = *n + j;
+ }
+ } else if (err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] <
+ err_lbnd__) {
+ err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = err_lbnd__;
+ err_bnds_norm__[j + err_bnds_norm_dim1] = 1.;
+ }
+
+/* Save the condition number. */
+
+ if (*n_err_bnds__ >= 3) {
+ err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = rcond_tmp__;
+ }
+ }
+ }
+ if (*n_err_bnds__ >= 1 && n_norms__ >= 2) {
+
+/* Compute componentwise condition number cond(A*diag(Y(:,J))) for */
+/* each right-hand side using the current solution as an estimate of */
+/* the true solution. If the componentwise error estimate is too */
+/* large, then the solution is a lousy estimate of truth and the */
+/* estimated RCOND may be too optimistic. To avoid misleading users, */
+/* the inverse condition number is set to 0.0 when the estimated */
+/* cwise error is at least CWISE_WRONG. */
+
+ cwise_wrong__ = sqrt(dlamch_("Epsilon"));
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] <
+ cwise_wrong__) {
+ rcond_tmp__ = dla_gbrcond__(trans, n, kl, ku, &ab[ab_offset],
+ ldab, &afb[afb_offset], ldafb, &ipiv[1], &c__1, &x[j *
+ x_dim1 + 1], info, &work[1], &iwork[1], (ftnlen)1);
+ } else {
+ rcond_tmp__ = 0.;
+ }
+
+/* Cap the error at 1.0. */
+
+ if (*n_err_bnds__ >= 2 && err_bnds_comp__[j + (err_bnds_comp_dim1
+ << 1)] > 1.) {
+ err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.;
+ }
+
+/* Threshold the error (see LAWN). */
+
+ if (rcond_tmp__ < illrcond_thresh__) {
+ err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.;
+ err_bnds_comp__[j + err_bnds_comp_dim1] = 0.;
+ if (params[3] == 1. && *info < *n + j) {
+ *info = *n + j;
+ }
+ } else if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] <
+ err_lbnd__) {
+ err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = err_lbnd__;
+ err_bnds_comp__[j + err_bnds_comp_dim1] = 1.;
+ }
+
+/* Save the condition number. */
+
+ if (*n_err_bnds__ >= 3) {
+ err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = rcond_tmp__;
+ }
+ }
+ }
+
+ return 0;
+
+/* End of DGBRFSX */
+
+} /* dgbrfsx_ */