diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dgbequb.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dgbequb.c')
-rw-r--r-- | contrib/libs/clapack/dgbequb.c | 347 |
1 files changed, 347 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dgbequb.c b/contrib/libs/clapack/dgbequb.c new file mode 100644 index 0000000000..4a0f34b6ad --- /dev/null +++ b/contrib/libs/clapack/dgbequb.c @@ -0,0 +1,347 @@ +/* dgbequb.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Subroutine */ int dgbequb_(integer *m, integer *n, integer *kl, integer * + ku, doublereal *ab, integer *ldab, doublereal *r__, doublereal *c__, + doublereal *rowcnd, doublereal *colcnd, doublereal *amax, integer * + info) +{ + /* System generated locals */ + integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4; + doublereal d__1, d__2, d__3; + + /* Builtin functions */ + double log(doublereal), pow_di(doublereal *, integer *); + + /* Local variables */ + integer i__, j, kd; + doublereal radix, rcmin, rcmax; + extern doublereal dlamch_(char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + doublereal bignum, logrdx, smlnum; + + +/* -- LAPACK routine (version 3.2) -- */ +/* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */ +/* -- Jason Riedy of Univ. of California Berkeley. -- */ +/* -- November 2008 -- */ + +/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ +/* -- Univ. of California Berkeley and NAG Ltd. -- */ + +/* .. */ +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DGBEQUB computes row and column scalings intended to equilibrate an */ +/* M-by-N matrix A and reduce its condition number. R returns the row */ +/* scale factors and C the column scale factors, chosen to try to make */ +/* the largest element in each row and column of the matrix B with */ +/* elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most */ +/* the radix. */ + +/* R(i) and C(j) are restricted to be a power of the radix between */ +/* SMLNUM = smallest safe number and BIGNUM = largest safe number. Use */ +/* of these scaling factors is not guaranteed to reduce the condition */ +/* number of A but works well in practice. */ + +/* This routine differs from DGEEQU by restricting the scaling factors */ +/* to a power of the radix. Baring over- and underflow, scaling by */ +/* these factors introduces no additional rounding errors. However, the */ +/* scaled entries' magnitured are no longer approximately 1 but lie */ +/* between sqrt(radix) and 1/sqrt(radix). */ + +/* Arguments */ +/* ========= */ + +/* M (input) INTEGER */ +/* The number of rows of the matrix A. M >= 0. */ + +/* N (input) INTEGER */ +/* The number of columns of the matrix A. N >= 0. */ + +/* KL (input) INTEGER */ +/* The number of subdiagonals within the band of A. KL >= 0. */ + +/* KU (input) INTEGER */ +/* The number of superdiagonals within the band of A. KU >= 0. */ + +/* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */ +/* On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */ +/* The j-th column of A is stored in the j-th column of the */ +/* array AB as follows: */ +/* AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) */ + +/* LDAB (input) INTEGER */ +/* The leading dimension of the array A. LDAB >= max(1,M). */ + +/* R (output) DOUBLE PRECISION array, dimension (M) */ +/* If INFO = 0 or INFO > M, R contains the row scale factors */ +/* for A. */ + +/* C (output) DOUBLE PRECISION array, dimension (N) */ +/* If INFO = 0, C contains the column scale factors for A. */ + +/* ROWCND (output) DOUBLE PRECISION */ +/* If INFO = 0 or INFO > M, ROWCND contains the ratio of the */ +/* smallest R(i) to the largest R(i). If ROWCND >= 0.1 and */ +/* AMAX is neither too large nor too small, it is not worth */ +/* scaling by R. */ + +/* COLCND (output) DOUBLE PRECISION */ +/* If INFO = 0, COLCND contains the ratio of the smallest */ +/* C(i) to the largest C(i). If COLCND >= 0.1, it is not */ +/* worth scaling by C. */ + +/* AMAX (output) DOUBLE PRECISION */ +/* Absolute value of largest matrix element. If AMAX is very */ +/* close to overflow or very close to underflow, the matrix */ +/* should be scaled. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: if INFO = i, and i is */ +/* <= M: the i-th row of A is exactly zero */ +/* > M: the (i-M)-th column of A is exactly zero */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + ab_dim1 = *ldab; + ab_offset = 1 + ab_dim1; + ab -= ab_offset; + --r__; + --c__; + + /* Function Body */ + *info = 0; + if (*m < 0) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*kl < 0) { + *info = -3; + } else if (*ku < 0) { + *info = -4; + } else if (*ldab < *kl + *ku + 1) { + *info = -6; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("DGBEQUB", &i__1); + return 0; + } + +/* Quick return if possible. */ + + if (*m == 0 || *n == 0) { + *rowcnd = 1.; + *colcnd = 1.; + *amax = 0.; + return 0; + } + +/* Get machine constants. Assume SMLNUM is a power of the radix. */ + + smlnum = dlamch_("S"); + bignum = 1. / smlnum; + radix = dlamch_("B"); + logrdx = log(radix); + +/* Compute row scale factors. */ + + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + r__[i__] = 0.; +/* L10: */ + } + +/* Find the maximum element in each row. */ + + kd = *ku + 1; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MAX */ + i__2 = j - *ku; +/* Computing MIN */ + i__4 = j + *kl; + i__3 = min(i__4,*m); + for (i__ = max(i__2,1); i__ <= i__3; ++i__) { +/* Computing MAX */ + d__2 = r__[i__], d__3 = (d__1 = ab[kd + i__ - j + j * ab_dim1], + abs(d__1)); + r__[i__] = max(d__2,d__3); +/* L20: */ + } +/* L30: */ + } + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + if (r__[i__] > 0.) { + i__3 = (integer) (log(r__[i__]) / logrdx); + r__[i__] = pow_di(&radix, &i__3); + } + } + +/* Find the maximum and minimum scale factors. */ + + rcmin = bignum; + rcmax = 0.; + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { +/* Computing MAX */ + d__1 = rcmax, d__2 = r__[i__]; + rcmax = max(d__1,d__2); +/* Computing MIN */ + d__1 = rcmin, d__2 = r__[i__]; + rcmin = min(d__1,d__2); +/* L40: */ + } + *amax = rcmax; + + if (rcmin == 0.) { + +/* Find the first zero scale factor and return an error code. */ + + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + if (r__[i__] == 0.) { + *info = i__; + return 0; + } +/* L50: */ + } + } else { + +/* Invert the scale factors. */ + + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { +/* Computing MIN */ +/* Computing MAX */ + d__2 = r__[i__]; + d__1 = max(d__2,smlnum); + r__[i__] = 1. / min(d__1,bignum); +/* L60: */ + } + +/* Compute ROWCND = min(R(I)) / max(R(I)). */ + + *rowcnd = max(rcmin,smlnum) / min(rcmax,bignum); + } + +/* Compute column scale factors. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + c__[j] = 0.; +/* L70: */ + } + +/* Find the maximum element in each column, */ +/* assuming the row scaling computed above. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MAX */ + i__3 = j - *ku; +/* Computing MIN */ + i__4 = j + *kl; + i__2 = min(i__4,*m); + for (i__ = max(i__3,1); i__ <= i__2; ++i__) { +/* Computing MAX */ + d__2 = c__[j], d__3 = (d__1 = ab[kd + i__ - j + j * ab_dim1], abs( + d__1)) * r__[i__]; + c__[j] = max(d__2,d__3); +/* L80: */ + } + if (c__[j] > 0.) { + i__2 = (integer) (log(c__[j]) / logrdx); + c__[j] = pow_di(&radix, &i__2); + } +/* L90: */ + } + +/* Find the maximum and minimum scale factors. */ + + rcmin = bignum; + rcmax = 0.; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MIN */ + d__1 = rcmin, d__2 = c__[j]; + rcmin = min(d__1,d__2); +/* Computing MAX */ + d__1 = rcmax, d__2 = c__[j]; + rcmax = max(d__1,d__2); +/* L100: */ + } + + if (rcmin == 0.) { + +/* Find the first zero scale factor and return an error code. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (c__[j] == 0.) { + *info = *m + j; + return 0; + } +/* L110: */ + } + } else { + +/* Invert the scale factors. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MIN */ +/* Computing MAX */ + d__2 = c__[j]; + d__1 = max(d__2,smlnum); + c__[j] = 1. / min(d__1,bignum); +/* L120: */ + } + +/* Compute COLCND = min(C(J)) / max(C(J)). */ + + *colcnd = max(rcmin,smlnum) / min(rcmax,bignum); + } + + return 0; + +/* End of DGBEQUB */ + +} /* dgbequb_ */ |