aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dgbequ.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dgbequ.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dgbequ.c')
-rw-r--r--contrib/libs/clapack/dgbequ.c320
1 files changed, 320 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dgbequ.c b/contrib/libs/clapack/dgbequ.c
new file mode 100644
index 0000000000..d1045379b4
--- /dev/null
+++ b/contrib/libs/clapack/dgbequ.c
@@ -0,0 +1,320 @@
+/* dgbequ.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int dgbequ_(integer *m, integer *n, integer *kl, integer *ku,
+ doublereal *ab, integer *ldab, doublereal *r__, doublereal *c__,
+ doublereal *rowcnd, doublereal *colcnd, doublereal *amax, integer *
+ info)
+{
+ /* System generated locals */
+ integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
+ doublereal d__1, d__2, d__3;
+
+ /* Local variables */
+ integer i__, j, kd;
+ doublereal rcmin, rcmax;
+ extern doublereal dlamch_(char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ doublereal bignum, smlnum;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DGBEQU computes row and column scalings intended to equilibrate an */
+/* M-by-N band matrix A and reduce its condition number. R returns the */
+/* row scale factors and C the column scale factors, chosen to try to */
+/* make the largest element in each row and column of the matrix B with */
+/* elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1. */
+
+/* R(i) and C(j) are restricted to be between SMLNUM = smallest safe */
+/* number and BIGNUM = largest safe number. Use of these scaling */
+/* factors is not guaranteed to reduce the condition number of A but */
+/* works well in practice. */
+
+/* Arguments */
+/* ========= */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix A. M >= 0. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrix A. N >= 0. */
+
+/* KL (input) INTEGER */
+/* The number of subdiagonals within the band of A. KL >= 0. */
+
+/* KU (input) INTEGER */
+/* The number of superdiagonals within the band of A. KU >= 0. */
+
+/* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */
+/* The band matrix A, stored in rows 1 to KL+KU+1. The j-th */
+/* column of A is stored in the j-th column of the array AB as */
+/* follows: */
+/* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl). */
+
+/* LDAB (input) INTEGER */
+/* The leading dimension of the array AB. LDAB >= KL+KU+1. */
+
+/* R (output) DOUBLE PRECISION array, dimension (M) */
+/* If INFO = 0, or INFO > M, R contains the row scale factors */
+/* for A. */
+
+/* C (output) DOUBLE PRECISION array, dimension (N) */
+/* If INFO = 0, C contains the column scale factors for A. */
+
+/* ROWCND (output) DOUBLE PRECISION */
+/* If INFO = 0 or INFO > M, ROWCND contains the ratio of the */
+/* smallest R(i) to the largest R(i). If ROWCND >= 0.1 and */
+/* AMAX is neither too large nor too small, it is not worth */
+/* scaling by R. */
+
+/* COLCND (output) DOUBLE PRECISION */
+/* If INFO = 0, COLCND contains the ratio of the smallest */
+/* C(i) to the largest C(i). If COLCND >= 0.1, it is not */
+/* worth scaling by C. */
+
+/* AMAX (output) DOUBLE PRECISION */
+/* Absolute value of largest matrix element. If AMAX is very */
+/* close to overflow or very close to underflow, the matrix */
+/* should be scaled. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, and i is */
+/* <= M: the i-th row of A is exactly zero */
+/* > M: the (i-M)-th column of A is exactly zero */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters */
+
+ /* Parameter adjustments */
+ ab_dim1 = *ldab;
+ ab_offset = 1 + ab_dim1;
+ ab -= ab_offset;
+ --r__;
+ --c__;
+
+ /* Function Body */
+ *info = 0;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*kl < 0) {
+ *info = -3;
+ } else if (*ku < 0) {
+ *info = -4;
+ } else if (*ldab < *kl + *ku + 1) {
+ *info = -6;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DGBEQU", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0 || *n == 0) {
+ *rowcnd = 1.;
+ *colcnd = 1.;
+ *amax = 0.;
+ return 0;
+ }
+
+/* Get machine constants. */
+
+ smlnum = dlamch_("S");
+ bignum = 1. / smlnum;
+
+/* Compute row scale factors. */
+
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ r__[i__] = 0.;
+/* L10: */
+ }
+
+/* Find the maximum element in each row. */
+
+ kd = *ku + 1;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MAX */
+ i__2 = j - *ku;
+/* Computing MIN */
+ i__4 = j + *kl;
+ i__3 = min(i__4,*m);
+ for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
+/* Computing MAX */
+ d__2 = r__[i__], d__3 = (d__1 = ab[kd + i__ - j + j * ab_dim1],
+ abs(d__1));
+ r__[i__] = max(d__2,d__3);
+/* L20: */
+ }
+/* L30: */
+ }
+
+/* Find the maximum and minimum scale factors. */
+
+ rcmin = bignum;
+ rcmax = 0.;
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+/* Computing MAX */
+ d__1 = rcmax, d__2 = r__[i__];
+ rcmax = max(d__1,d__2);
+/* Computing MIN */
+ d__1 = rcmin, d__2 = r__[i__];
+ rcmin = min(d__1,d__2);
+/* L40: */
+ }
+ *amax = rcmax;
+
+ if (rcmin == 0.) {
+
+/* Find the first zero scale factor and return an error code. */
+
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (r__[i__] == 0.) {
+ *info = i__;
+ return 0;
+ }
+/* L50: */
+ }
+ } else {
+
+/* Invert the scale factors. */
+
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+/* Computing MIN */
+/* Computing MAX */
+ d__2 = r__[i__];
+ d__1 = max(d__2,smlnum);
+ r__[i__] = 1. / min(d__1,bignum);
+/* L60: */
+ }
+
+/* Compute ROWCND = min(R(I)) / max(R(I)) */
+
+ *rowcnd = max(rcmin,smlnum) / min(rcmax,bignum);
+ }
+
+/* Compute column scale factors */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ c__[j] = 0.;
+/* L70: */
+ }
+
+/* Find the maximum element in each column, */
+/* assuming the row scaling computed above. */
+
+ kd = *ku + 1;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MAX */
+ i__3 = j - *ku;
+/* Computing MIN */
+ i__4 = j + *kl;
+ i__2 = min(i__4,*m);
+ for (i__ = max(i__3,1); i__ <= i__2; ++i__) {
+/* Computing MAX */
+ d__2 = c__[j], d__3 = (d__1 = ab[kd + i__ - j + j * ab_dim1], abs(
+ d__1)) * r__[i__];
+ c__[j] = max(d__2,d__3);
+/* L80: */
+ }
+/* L90: */
+ }
+
+/* Find the maximum and minimum scale factors. */
+
+ rcmin = bignum;
+ rcmax = 0.;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MIN */
+ d__1 = rcmin, d__2 = c__[j];
+ rcmin = min(d__1,d__2);
+/* Computing MAX */
+ d__1 = rcmax, d__2 = c__[j];
+ rcmax = max(d__1,d__2);
+/* L100: */
+ }
+
+ if (rcmin == 0.) {
+
+/* Find the first zero scale factor and return an error code. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (c__[j] == 0.) {
+ *info = *m + j;
+ return 0;
+ }
+/* L110: */
+ }
+ } else {
+
+/* Invert the scale factors. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MIN */
+/* Computing MAX */
+ d__2 = c__[j];
+ d__1 = max(d__2,smlnum);
+ c__[j] = 1. / min(d__1,bignum);
+/* L120: */
+ }
+
+/* Compute COLCND = min(C(J)) / max(C(J)) */
+
+ *colcnd = max(rcmin,smlnum) / min(rcmax,bignum);
+ }
+
+ return 0;
+
+/* End of DGBEQU */
+
+} /* dgbequ_ */