aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dgbbrd.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dgbbrd.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dgbbrd.c')
-rw-r--r--contrib/libs/clapack/dgbbrd.c566
1 files changed, 566 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dgbbrd.c b/contrib/libs/clapack/dgbbrd.c
new file mode 100644
index 0000000000..03e09a7597
--- /dev/null
+++ b/contrib/libs/clapack/dgbbrd.c
@@ -0,0 +1,566 @@
+/* dgbbrd.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublereal c_b8 = 0.;
+static doublereal c_b9 = 1.;
+static integer c__1 = 1;
+
+/* Subroutine */ int dgbbrd_(char *vect, integer *m, integer *n, integer *ncc,
+ integer *kl, integer *ku, doublereal *ab, integer *ldab, doublereal *
+ d__, doublereal *e, doublereal *q, integer *ldq, doublereal *pt,
+ integer *ldpt, doublereal *c__, integer *ldc, doublereal *work,
+ integer *info)
+{
+ /* System generated locals */
+ integer ab_dim1, ab_offset, c_dim1, c_offset, pt_dim1, pt_offset, q_dim1,
+ q_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7;
+
+ /* Local variables */
+ integer i__, j, l, j1, j2, kb;
+ doublereal ra, rb, rc;
+ integer kk, ml, mn, nr, mu;
+ doublereal rs;
+ integer kb1, ml0, mu0, klm, kun, nrt, klu1, inca;
+ extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *);
+ extern logical lsame_(char *, char *);
+ logical wantb, wantc;
+ integer minmn;
+ logical wantq;
+ extern /* Subroutine */ int dlaset_(char *, integer *, integer *,
+ doublereal *, doublereal *, doublereal *, integer *),
+ dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *), xerbla_(char *, integer *), dlargv_(
+ integer *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, integer *), dlartv_(integer *, doublereal *,
+ integer *, doublereal *, integer *, doublereal *, doublereal *,
+ integer *);
+ logical wantpt;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DGBBRD reduces a real general m-by-n band matrix A to upper */
+/* bidiagonal form B by an orthogonal transformation: Q' * A * P = B. */
+
+/* The routine computes B, and optionally forms Q or P', or computes */
+/* Q'*C for a given matrix C. */
+
+/* Arguments */
+/* ========= */
+
+/* VECT (input) CHARACTER*1 */
+/* Specifies whether or not the matrices Q and P' are to be */
+/* formed. */
+/* = 'N': do not form Q or P'; */
+/* = 'Q': form Q only; */
+/* = 'P': form P' only; */
+/* = 'B': form both. */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix A. M >= 0. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrix A. N >= 0. */
+
+/* NCC (input) INTEGER */
+/* The number of columns of the matrix C. NCC >= 0. */
+
+/* KL (input) INTEGER */
+/* The number of subdiagonals of the matrix A. KL >= 0. */
+
+/* KU (input) INTEGER */
+/* The number of superdiagonals of the matrix A. KU >= 0. */
+
+/* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
+/* On entry, the m-by-n band matrix A, stored in rows 1 to */
+/* KL+KU+1. The j-th column of A is stored in the j-th column of */
+/* the array AB as follows: */
+/* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl). */
+/* On exit, A is overwritten by values generated during the */
+/* reduction. */
+
+/* LDAB (input) INTEGER */
+/* The leading dimension of the array A. LDAB >= KL+KU+1. */
+
+/* D (output) DOUBLE PRECISION array, dimension (min(M,N)) */
+/* The diagonal elements of the bidiagonal matrix B. */
+
+/* E (output) DOUBLE PRECISION array, dimension (min(M,N)-1) */
+/* The superdiagonal elements of the bidiagonal matrix B. */
+
+/* Q (output) DOUBLE PRECISION array, dimension (LDQ,M) */
+/* If VECT = 'Q' or 'B', the m-by-m orthogonal matrix Q. */
+/* If VECT = 'N' or 'P', the array Q is not referenced. */
+
+/* LDQ (input) INTEGER */
+/* The leading dimension of the array Q. */
+/* LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise. */
+
+/* PT (output) DOUBLE PRECISION array, dimension (LDPT,N) */
+/* If VECT = 'P' or 'B', the n-by-n orthogonal matrix P'. */
+/* If VECT = 'N' or 'Q', the array PT is not referenced. */
+
+/* LDPT (input) INTEGER */
+/* The leading dimension of the array PT. */
+/* LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise. */
+
+/* C (input/output) DOUBLE PRECISION array, dimension (LDC,NCC) */
+/* On entry, an m-by-ncc matrix C. */
+/* On exit, C is overwritten by Q'*C. */
+/* C is not referenced if NCC = 0. */
+
+/* LDC (input) INTEGER */
+/* The leading dimension of the array C. */
+/* LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0. */
+
+/* WORK (workspace) DOUBLE PRECISION array, dimension (2*max(M,N)) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit. */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters */
+
+ /* Parameter adjustments */
+ ab_dim1 = *ldab;
+ ab_offset = 1 + ab_dim1;
+ ab -= ab_offset;
+ --d__;
+ --e;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1;
+ q -= q_offset;
+ pt_dim1 = *ldpt;
+ pt_offset = 1 + pt_dim1;
+ pt -= pt_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+ --work;
+
+ /* Function Body */
+ wantb = lsame_(vect, "B");
+ wantq = lsame_(vect, "Q") || wantb;
+ wantpt = lsame_(vect, "P") || wantb;
+ wantc = *ncc > 0;
+ klu1 = *kl + *ku + 1;
+ *info = 0;
+ if (! wantq && ! wantpt && ! lsame_(vect, "N")) {
+ *info = -1;
+ } else if (*m < 0) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*ncc < 0) {
+ *info = -4;
+ } else if (*kl < 0) {
+ *info = -5;
+ } else if (*ku < 0) {
+ *info = -6;
+ } else if (*ldab < klu1) {
+ *info = -8;
+ } else if (*ldq < 1 || wantq && *ldq < max(1,*m)) {
+ *info = -12;
+ } else if (*ldpt < 1 || wantpt && *ldpt < max(1,*n)) {
+ *info = -14;
+ } else if (*ldc < 1 || wantc && *ldc < max(1,*m)) {
+ *info = -16;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DGBBRD", &i__1);
+ return 0;
+ }
+
+/* Initialize Q and P' to the unit matrix, if needed */
+
+ if (wantq) {
+ dlaset_("Full", m, m, &c_b8, &c_b9, &q[q_offset], ldq);
+ }
+ if (wantpt) {
+ dlaset_("Full", n, n, &c_b8, &c_b9, &pt[pt_offset], ldpt);
+ }
+
+/* Quick return if possible. */
+
+ if (*m == 0 || *n == 0) {
+ return 0;
+ }
+
+ minmn = min(*m,*n);
+
+ if (*kl + *ku > 1) {
+
+/* Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce */
+/* first to lower bidiagonal form and then transform to upper */
+/* bidiagonal */
+
+ if (*ku > 0) {
+ ml0 = 1;
+ mu0 = 2;
+ } else {
+ ml0 = 2;
+ mu0 = 1;
+ }
+
+/* Wherever possible, plane rotations are generated and applied in */
+/* vector operations of length NR over the index set J1:J2:KLU1. */
+
+/* The sines of the plane rotations are stored in WORK(1:max(m,n)) */
+/* and the cosines in WORK(max(m,n)+1:2*max(m,n)). */
+
+ mn = max(*m,*n);
+/* Computing MIN */
+ i__1 = *m - 1;
+ klm = min(i__1,*kl);
+/* Computing MIN */
+ i__1 = *n - 1;
+ kun = min(i__1,*ku);
+ kb = klm + kun;
+ kb1 = kb + 1;
+ inca = kb1 * *ldab;
+ nr = 0;
+ j1 = klm + 2;
+ j2 = 1 - kun;
+
+ i__1 = minmn;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+
+/* Reduce i-th column and i-th row of matrix to bidiagonal form */
+
+ ml = klm + 1;
+ mu = kun + 1;
+ i__2 = kb;
+ for (kk = 1; kk <= i__2; ++kk) {
+ j1 += kb;
+ j2 += kb;
+
+/* generate plane rotations to annihilate nonzero elements */
+/* which have been created below the band */
+
+ if (nr > 0) {
+ dlargv_(&nr, &ab[klu1 + (j1 - klm - 1) * ab_dim1], &inca,
+ &work[j1], &kb1, &work[mn + j1], &kb1);
+ }
+
+/* apply plane rotations from the left */
+
+ i__3 = kb;
+ for (l = 1; l <= i__3; ++l) {
+ if (j2 - klm + l - 1 > *n) {
+ nrt = nr - 1;
+ } else {
+ nrt = nr;
+ }
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[klu1 - l + (j1 - klm + l - 1) *
+ ab_dim1], &inca, &ab[klu1 - l + 1 + (j1 - klm
+ + l - 1) * ab_dim1], &inca, &work[mn + j1], &
+ work[j1], &kb1);
+ }
+/* L10: */
+ }
+
+ if (ml > ml0) {
+ if (ml <= *m - i__ + 1) {
+
+/* generate plane rotation to annihilate a(i+ml-1,i) */
+/* within the band, and apply rotation from the left */
+
+ dlartg_(&ab[*ku + ml - 1 + i__ * ab_dim1], &ab[*ku +
+ ml + i__ * ab_dim1], &work[mn + i__ + ml - 1],
+ &work[i__ + ml - 1], &ra);
+ ab[*ku + ml - 1 + i__ * ab_dim1] = ra;
+ if (i__ < *n) {
+/* Computing MIN */
+ i__4 = *ku + ml - 2, i__5 = *n - i__;
+ i__3 = min(i__4,i__5);
+ i__6 = *ldab - 1;
+ i__7 = *ldab - 1;
+ drot_(&i__3, &ab[*ku + ml - 2 + (i__ + 1) *
+ ab_dim1], &i__6, &ab[*ku + ml - 1 + (i__
+ + 1) * ab_dim1], &i__7, &work[mn + i__ +
+ ml - 1], &work[i__ + ml - 1]);
+ }
+ }
+ ++nr;
+ j1 -= kb1;
+ }
+
+ if (wantq) {
+
+/* accumulate product of plane rotations in Q */
+
+ i__3 = j2;
+ i__4 = kb1;
+ for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4)
+ {
+ drot_(m, &q[(j - 1) * q_dim1 + 1], &c__1, &q[j *
+ q_dim1 + 1], &c__1, &work[mn + j], &work[j]);
+/* L20: */
+ }
+ }
+
+ if (wantc) {
+
+/* apply plane rotations to C */
+
+ i__4 = j2;
+ i__3 = kb1;
+ for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3)
+ {
+ drot_(ncc, &c__[j - 1 + c_dim1], ldc, &c__[j + c_dim1]
+, ldc, &work[mn + j], &work[j]);
+/* L30: */
+ }
+ }
+
+ if (j2 + kun > *n) {
+
+/* adjust J2 to keep within the bounds of the matrix */
+
+ --nr;
+ j2 -= kb1;
+ }
+
+ i__3 = j2;
+ i__4 = kb1;
+ for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
+
+/* create nonzero element a(j-1,j+ku) above the band */
+/* and store it in WORK(n+1:2*n) */
+
+ work[j + kun] = work[j] * ab[(j + kun) * ab_dim1 + 1];
+ ab[(j + kun) * ab_dim1 + 1] = work[mn + j] * ab[(j + kun)
+ * ab_dim1 + 1];
+/* L40: */
+ }
+
+/* generate plane rotations to annihilate nonzero elements */
+/* which have been generated above the band */
+
+ if (nr > 0) {
+ dlargv_(&nr, &ab[(j1 + kun - 1) * ab_dim1 + 1], &inca, &
+ work[j1 + kun], &kb1, &work[mn + j1 + kun], &kb1);
+ }
+
+/* apply plane rotations from the right */
+
+ i__4 = kb;
+ for (l = 1; l <= i__4; ++l) {
+ if (j2 + l - 1 > *m) {
+ nrt = nr - 1;
+ } else {
+ nrt = nr;
+ }
+ if (nrt > 0) {
+ dlartv_(&nrt, &ab[l + 1 + (j1 + kun - 1) * ab_dim1], &
+ inca, &ab[l + (j1 + kun) * ab_dim1], &inca, &
+ work[mn + j1 + kun], &work[j1 + kun], &kb1);
+ }
+/* L50: */
+ }
+
+ if (ml == ml0 && mu > mu0) {
+ if (mu <= *n - i__ + 1) {
+
+/* generate plane rotation to annihilate a(i,i+mu-1) */
+/* within the band, and apply rotation from the right */
+
+ dlartg_(&ab[*ku - mu + 3 + (i__ + mu - 2) * ab_dim1],
+ &ab[*ku - mu + 2 + (i__ + mu - 1) * ab_dim1],
+ &work[mn + i__ + mu - 1], &work[i__ + mu - 1],
+ &ra);
+ ab[*ku - mu + 3 + (i__ + mu - 2) * ab_dim1] = ra;
+/* Computing MIN */
+ i__3 = *kl + mu - 2, i__5 = *m - i__;
+ i__4 = min(i__3,i__5);
+ drot_(&i__4, &ab[*ku - mu + 4 + (i__ + mu - 2) *
+ ab_dim1], &c__1, &ab[*ku - mu + 3 + (i__ + mu
+ - 1) * ab_dim1], &c__1, &work[mn + i__ + mu -
+ 1], &work[i__ + mu - 1]);
+ }
+ ++nr;
+ j1 -= kb1;
+ }
+
+ if (wantpt) {
+
+/* accumulate product of plane rotations in P' */
+
+ i__4 = j2;
+ i__3 = kb1;
+ for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3)
+ {
+ drot_(n, &pt[j + kun - 1 + pt_dim1], ldpt, &pt[j +
+ kun + pt_dim1], ldpt, &work[mn + j + kun], &
+ work[j + kun]);
+/* L60: */
+ }
+ }
+
+ if (j2 + kb > *m) {
+
+/* adjust J2 to keep within the bounds of the matrix */
+
+ --nr;
+ j2 -= kb1;
+ }
+
+ i__3 = j2;
+ i__4 = kb1;
+ for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
+
+/* create nonzero element a(j+kl+ku,j+ku-1) below the */
+/* band and store it in WORK(1:n) */
+
+ work[j + kb] = work[j + kun] * ab[klu1 + (j + kun) *
+ ab_dim1];
+ ab[klu1 + (j + kun) * ab_dim1] = work[mn + j + kun] * ab[
+ klu1 + (j + kun) * ab_dim1];
+/* L70: */
+ }
+
+ if (ml > ml0) {
+ --ml;
+ } else {
+ --mu;
+ }
+/* L80: */
+ }
+/* L90: */
+ }
+ }
+
+ if (*ku == 0 && *kl > 0) {
+
+/* A has been reduced to lower bidiagonal form */
+
+/* Transform lower bidiagonal form to upper bidiagonal by applying */
+/* plane rotations from the left, storing diagonal elements in D */
+/* and off-diagonal elements in E */
+
+/* Computing MIN */
+ i__2 = *m - 1;
+ i__1 = min(i__2,*n);
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dlartg_(&ab[i__ * ab_dim1 + 1], &ab[i__ * ab_dim1 + 2], &rc, &rs,
+ &ra);
+ d__[i__] = ra;
+ if (i__ < *n) {
+ e[i__] = rs * ab[(i__ + 1) * ab_dim1 + 1];
+ ab[(i__ + 1) * ab_dim1 + 1] = rc * ab[(i__ + 1) * ab_dim1 + 1]
+ ;
+ }
+ if (wantq) {
+ drot_(m, &q[i__ * q_dim1 + 1], &c__1, &q[(i__ + 1) * q_dim1 +
+ 1], &c__1, &rc, &rs);
+ }
+ if (wantc) {
+ drot_(ncc, &c__[i__ + c_dim1], ldc, &c__[i__ + 1 + c_dim1],
+ ldc, &rc, &rs);
+ }
+/* L100: */
+ }
+ if (*m <= *n) {
+ d__[*m] = ab[*m * ab_dim1 + 1];
+ }
+ } else if (*ku > 0) {
+
+/* A has been reduced to upper bidiagonal form */
+
+ if (*m < *n) {
+
+/* Annihilate a(m,m+1) by applying plane rotations from the */
+/* right, storing diagonal elements in D and off-diagonal */
+/* elements in E */
+
+ rb = ab[*ku + (*m + 1) * ab_dim1];
+ for (i__ = *m; i__ >= 1; --i__) {
+ dlartg_(&ab[*ku + 1 + i__ * ab_dim1], &rb, &rc, &rs, &ra);
+ d__[i__] = ra;
+ if (i__ > 1) {
+ rb = -rs * ab[*ku + i__ * ab_dim1];
+ e[i__ - 1] = rc * ab[*ku + i__ * ab_dim1];
+ }
+ if (wantpt) {
+ drot_(n, &pt[i__ + pt_dim1], ldpt, &pt[*m + 1 + pt_dim1],
+ ldpt, &rc, &rs);
+ }
+/* L110: */
+ }
+ } else {
+
+/* Copy off-diagonal elements to E and diagonal elements to D */
+
+ i__1 = minmn - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ e[i__] = ab[*ku + (i__ + 1) * ab_dim1];
+/* L120: */
+ }
+ i__1 = minmn;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ d__[i__] = ab[*ku + 1 + i__ * ab_dim1];
+/* L130: */
+ }
+ }
+ } else {
+
+/* A is diagonal. Set elements of E to zero and copy diagonal */
+/* elements to D. */
+
+ i__1 = minmn - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ e[i__] = 0.;
+/* L140: */
+ }
+ i__1 = minmn;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ d__[i__] = ab[i__ * ab_dim1 + 1];
+/* L150: */
+ }
+ }
+ return 0;
+
+/* End of DGBBRD */
+
+} /* dgbbrd_ */