aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dbdsqr.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dbdsqr.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dbdsqr.c')
-rw-r--r--contrib/libs/clapack/dbdsqr.c918
1 files changed, 918 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dbdsqr.c b/contrib/libs/clapack/dbdsqr.c
new file mode 100644
index 0000000000..08b04fc9da
--- /dev/null
+++ b/contrib/libs/clapack/dbdsqr.c
@@ -0,0 +1,918 @@
+/* dbdsqr.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublereal c_b15 = -.125;
+static integer c__1 = 1;
+static doublereal c_b49 = 1.;
+static doublereal c_b72 = -1.;
+
+/* Subroutine */ int dbdsqr_(char *uplo, integer *n, integer *ncvt, integer *
+ nru, integer *ncc, doublereal *d__, doublereal *e, doublereal *vt,
+ integer *ldvt, doublereal *u, integer *ldu, doublereal *c__, integer *
+ ldc, doublereal *work, integer *info)
+{
+ /* System generated locals */
+ integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
+ i__2;
+ doublereal d__1, d__2, d__3, d__4;
+
+ /* Builtin functions */
+ double pow_dd(doublereal *, doublereal *), sqrt(doublereal), d_sign(
+ doublereal *, doublereal *);
+
+ /* Local variables */
+ doublereal f, g, h__;
+ integer i__, j, m;
+ doublereal r__, cs;
+ integer ll;
+ doublereal sn, mu;
+ integer nm1, nm12, nm13, lll;
+ doublereal eps, sll, tol, abse;
+ integer idir;
+ doublereal abss;
+ integer oldm;
+ doublereal cosl;
+ integer isub, iter;
+ doublereal unfl, sinl, cosr, smin, smax, sinr;
+ extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *), dlas2_(
+ doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *), dscal_(integer *, doublereal *, doublereal *,
+ integer *);
+ extern logical lsame_(char *, char *);
+ doublereal oldcs;
+ extern /* Subroutine */ int dlasr_(char *, char *, char *, integer *,
+ integer *, doublereal *, doublereal *, doublereal *, integer *);
+ integer oldll;
+ doublereal shift, sigmn, oldsn;
+ extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
+ doublereal *, integer *);
+ integer maxit;
+ doublereal sminl, sigmx;
+ logical lower;
+ extern /* Subroutine */ int dlasq1_(integer *, doublereal *, doublereal *,
+ doublereal *, integer *), dlasv2_(doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *);
+ extern doublereal dlamch_(char *);
+ extern /* Subroutine */ int dlartg_(doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *), xerbla_(char *,
+ integer *);
+ doublereal sminoa, thresh;
+ logical rotate;
+ doublereal tolmul;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* January 2007 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DBDSQR computes the singular values and, optionally, the right and/or */
+/* left singular vectors from the singular value decomposition (SVD) of */
+/* a real N-by-N (upper or lower) bidiagonal matrix B using the implicit */
+/* zero-shift QR algorithm. The SVD of B has the form */
+
+/* B = Q * S * P**T */
+
+/* where S is the diagonal matrix of singular values, Q is an orthogonal */
+/* matrix of left singular vectors, and P is an orthogonal matrix of */
+/* right singular vectors. If left singular vectors are requested, this */
+/* subroutine actually returns U*Q instead of Q, and, if right singular */
+/* vectors are requested, this subroutine returns P**T*VT instead of */
+/* P**T, for given real input matrices U and VT. When U and VT are the */
+/* orthogonal matrices that reduce a general matrix A to bidiagonal */
+/* form: A = U*B*VT, as computed by DGEBRD, then */
+
+/* A = (U*Q) * S * (P**T*VT) */
+
+/* is the SVD of A. Optionally, the subroutine may also compute Q**T*C */
+/* for a given real input matrix C. */
+
+/* See "Computing Small Singular Values of Bidiagonal Matrices With */
+/* Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, */
+/* LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11, */
+/* no. 5, pp. 873-912, Sept 1990) and */
+/* "Accurate singular values and differential qd algorithms," by */
+/* B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics */
+/* Department, University of California at Berkeley, July 1992 */
+/* for a detailed description of the algorithm. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': B is upper bidiagonal; */
+/* = 'L': B is lower bidiagonal. */
+
+/* N (input) INTEGER */
+/* The order of the matrix B. N >= 0. */
+
+/* NCVT (input) INTEGER */
+/* The number of columns of the matrix VT. NCVT >= 0. */
+
+/* NRU (input) INTEGER */
+/* The number of rows of the matrix U. NRU >= 0. */
+
+/* NCC (input) INTEGER */
+/* The number of columns of the matrix C. NCC >= 0. */
+
+/* D (input/output) DOUBLE PRECISION array, dimension (N) */
+/* On entry, the n diagonal elements of the bidiagonal matrix B. */
+/* On exit, if INFO=0, the singular values of B in decreasing */
+/* order. */
+
+/* E (input/output) DOUBLE PRECISION array, dimension (N-1) */
+/* On entry, the N-1 offdiagonal elements of the bidiagonal */
+/* matrix B. */
+/* On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E */
+/* will contain the diagonal and superdiagonal elements of a */
+/* bidiagonal matrix orthogonally equivalent to the one given */
+/* as input. */
+
+/* VT (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT) */
+/* On entry, an N-by-NCVT matrix VT. */
+/* On exit, VT is overwritten by P**T * VT. */
+/* Not referenced if NCVT = 0. */
+
+/* LDVT (input) INTEGER */
+/* The leading dimension of the array VT. */
+/* LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0. */
+
+/* U (input/output) DOUBLE PRECISION array, dimension (LDU, N) */
+/* On entry, an NRU-by-N matrix U. */
+/* On exit, U is overwritten by U * Q. */
+/* Not referenced if NRU = 0. */
+
+/* LDU (input) INTEGER */
+/* The leading dimension of the array U. LDU >= max(1,NRU). */
+
+/* C (input/output) DOUBLE PRECISION array, dimension (LDC, NCC) */
+/* On entry, an N-by-NCC matrix C. */
+/* On exit, C is overwritten by Q**T * C. */
+/* Not referenced if NCC = 0. */
+
+/* LDC (input) INTEGER */
+/* The leading dimension of the array C. */
+/* LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0. */
+
+/* WORK (workspace) DOUBLE PRECISION array, dimension (4*N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: If INFO = -i, the i-th argument had an illegal value */
+/* > 0: */
+/* if NCVT = NRU = NCC = 0, */
+/* = 1, a split was marked by a positive value in E */
+/* = 2, current block of Z not diagonalized after 30*N */
+/* iterations (in inner while loop) */
+/* = 3, termination criterion of outer while loop not met */
+/* (program created more than N unreduced blocks) */
+/* else NCVT = NRU = NCC = 0, */
+/* the algorithm did not converge; D and E contain the */
+/* elements of a bidiagonal matrix which is orthogonally */
+/* similar to the input matrix B; if INFO = i, i */
+/* elements of E have not converged to zero. */
+
+/* Internal Parameters */
+/* =================== */
+
+/* TOLMUL DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8))) */
+/* TOLMUL controls the convergence criterion of the QR loop. */
+/* If it is positive, TOLMUL*EPS is the desired relative */
+/* precision in the computed singular values. */
+/* If it is negative, abs(TOLMUL*EPS*sigma_max) is the */
+/* desired absolute accuracy in the computed singular */
+/* values (corresponds to relative accuracy */
+/* abs(TOLMUL*EPS) in the largest singular value. */
+/* abs(TOLMUL) should be between 1 and 1/EPS, and preferably */
+/* between 10 (for fast convergence) and .1/EPS */
+/* (for there to be some accuracy in the results). */
+/* Default is to lose at either one eighth or 2 of the */
+/* available decimal digits in each computed singular value */
+/* (whichever is smaller). */
+
+/* MAXITR INTEGER, default = 6 */
+/* MAXITR controls the maximum number of passes of the */
+/* algorithm through its inner loop. The algorithms stops */
+/* (and so fails to converge) if the number of passes */
+/* through the inner loop exceeds MAXITR*N**2. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --d__;
+ --e;
+ vt_dim1 = *ldvt;
+ vt_offset = 1 + vt_dim1;
+ vt -= vt_offset;
+ u_dim1 = *ldu;
+ u_offset = 1 + u_dim1;
+ u -= u_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ lower = lsame_(uplo, "L");
+ if (! lsame_(uplo, "U") && ! lower) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*ncvt < 0) {
+ *info = -3;
+ } else if (*nru < 0) {
+ *info = -4;
+ } else if (*ncc < 0) {
+ *info = -5;
+ } else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < max(1,*n)) {
+ *info = -9;
+ } else if (*ldu < max(1,*nru)) {
+ *info = -11;
+ } else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < max(1,*n)) {
+ *info = -13;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DBDSQR", &i__1);
+ return 0;
+ }
+ if (*n == 0) {
+ return 0;
+ }
+ if (*n == 1) {
+ goto L160;
+ }
+
+/* ROTATE is true if any singular vectors desired, false otherwise */
+
+ rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
+
+/* If no singular vectors desired, use qd algorithm */
+
+ if (! rotate) {
+ dlasq1_(n, &d__[1], &e[1], &work[1], info);
+ return 0;
+ }
+
+ nm1 = *n - 1;
+ nm12 = nm1 + nm1;
+ nm13 = nm12 + nm1;
+ idir = 0;
+
+/* Get machine constants */
+
+ eps = dlamch_("Epsilon");
+ unfl = dlamch_("Safe minimum");
+
+/* If matrix lower bidiagonal, rotate to be upper bidiagonal */
+/* by applying Givens rotations on the left */
+
+ if (lower) {
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
+ d__[i__] = r__;
+ e[i__] = sn * d__[i__ + 1];
+ d__[i__ + 1] = cs * d__[i__ + 1];
+ work[i__] = cs;
+ work[nm1 + i__] = sn;
+/* L10: */
+ }
+
+/* Update singular vectors if desired */
+
+ if (*nru > 0) {
+ dlasr_("R", "V", "F", nru, n, &work[1], &work[*n], &u[u_offset],
+ ldu);
+ }
+ if (*ncc > 0) {
+ dlasr_("L", "V", "F", n, ncc, &work[1], &work[*n], &c__[c_offset],
+ ldc);
+ }
+ }
+
+/* Compute singular values to relative accuracy TOL */
+/* (By setting TOL to be negative, algorithm will compute */
+/* singular values to absolute accuracy ABS(TOL)*norm(input matrix)) */
+
+/* Computing MAX */
+/* Computing MIN */
+ d__3 = 100., d__4 = pow_dd(&eps, &c_b15);
+ d__1 = 10., d__2 = min(d__3,d__4);
+ tolmul = max(d__1,d__2);
+ tol = tolmul * eps;
+
+/* Compute approximate maximum, minimum singular values */
+
+ smax = 0.;
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+/* Computing MAX */
+ d__2 = smax, d__3 = (d__1 = d__[i__], abs(d__1));
+ smax = max(d__2,d__3);
+/* L20: */
+ }
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+/* Computing MAX */
+ d__2 = smax, d__3 = (d__1 = e[i__], abs(d__1));
+ smax = max(d__2,d__3);
+/* L30: */
+ }
+ sminl = 0.;
+ if (tol >= 0.) {
+
+/* Relative accuracy desired */
+
+ sminoa = abs(d__[1]);
+ if (sminoa == 0.) {
+ goto L50;
+ }
+ mu = sminoa;
+ i__1 = *n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ mu = (d__2 = d__[i__], abs(d__2)) * (mu / (mu + (d__1 = e[i__ - 1]
+ , abs(d__1))));
+ sminoa = min(sminoa,mu);
+ if (sminoa == 0.) {
+ goto L50;
+ }
+/* L40: */
+ }
+L50:
+ sminoa /= sqrt((doublereal) (*n));
+/* Computing MAX */
+ d__1 = tol * sminoa, d__2 = *n * 6 * *n * unfl;
+ thresh = max(d__1,d__2);
+ } else {
+
+/* Absolute accuracy desired */
+
+/* Computing MAX */
+ d__1 = abs(tol) * smax, d__2 = *n * 6 * *n * unfl;
+ thresh = max(d__1,d__2);
+ }
+
+/* Prepare for main iteration loop for the singular values */
+/* (MAXIT is the maximum number of passes through the inner */
+/* loop permitted before nonconvergence signalled.) */
+
+ maxit = *n * 6 * *n;
+ iter = 0;
+ oldll = -1;
+ oldm = -1;
+
+/* M points to last element of unconverged part of matrix */
+
+ m = *n;
+
+/* Begin main iteration loop */
+
+L60:
+
+/* Check for convergence or exceeding iteration count */
+
+ if (m <= 1) {
+ goto L160;
+ }
+ if (iter > maxit) {
+ goto L200;
+ }
+
+/* Find diagonal block of matrix to work on */
+
+ if (tol < 0. && (d__1 = d__[m], abs(d__1)) <= thresh) {
+ d__[m] = 0.;
+ }
+ smax = (d__1 = d__[m], abs(d__1));
+ smin = smax;
+ i__1 = m - 1;
+ for (lll = 1; lll <= i__1; ++lll) {
+ ll = m - lll;
+ abss = (d__1 = d__[ll], abs(d__1));
+ abse = (d__1 = e[ll], abs(d__1));
+ if (tol < 0. && abss <= thresh) {
+ d__[ll] = 0.;
+ }
+ if (abse <= thresh) {
+ goto L80;
+ }
+ smin = min(smin,abss);
+/* Computing MAX */
+ d__1 = max(smax,abss);
+ smax = max(d__1,abse);
+/* L70: */
+ }
+ ll = 0;
+ goto L90;
+L80:
+ e[ll] = 0.;
+
+/* Matrix splits since E(LL) = 0 */
+
+ if (ll == m - 1) {
+
+/* Convergence of bottom singular value, return to top of loop */
+
+ --m;
+ goto L60;
+ }
+L90:
+ ++ll;
+
+/* E(LL) through E(M-1) are nonzero, E(LL-1) is zero */
+
+ if (ll == m - 1) {
+
+/* 2 by 2 block, handle separately */
+
+ dlasv2_(&d__[m - 1], &e[m - 1], &d__[m], &sigmn, &sigmx, &sinr, &cosr,
+ &sinl, &cosl);
+ d__[m - 1] = sigmx;
+ e[m - 1] = 0.;
+ d__[m] = sigmn;
+
+/* Compute singular vectors, if desired */
+
+ if (*ncvt > 0) {
+ drot_(ncvt, &vt[m - 1 + vt_dim1], ldvt, &vt[m + vt_dim1], ldvt, &
+ cosr, &sinr);
+ }
+ if (*nru > 0) {
+ drot_(nru, &u[(m - 1) * u_dim1 + 1], &c__1, &u[m * u_dim1 + 1], &
+ c__1, &cosl, &sinl);
+ }
+ if (*ncc > 0) {
+ drot_(ncc, &c__[m - 1 + c_dim1], ldc, &c__[m + c_dim1], ldc, &
+ cosl, &sinl);
+ }
+ m += -2;
+ goto L60;
+ }
+
+/* If working on new submatrix, choose shift direction */
+/* (from larger end diagonal element towards smaller) */
+
+ if (ll > oldm || m < oldll) {
+ if ((d__1 = d__[ll], abs(d__1)) >= (d__2 = d__[m], abs(d__2))) {
+
+/* Chase bulge from top (big end) to bottom (small end) */
+
+ idir = 1;
+ } else {
+
+/* Chase bulge from bottom (big end) to top (small end) */
+
+ idir = 2;
+ }
+ }
+
+/* Apply convergence tests */
+
+ if (idir == 1) {
+
+/* Run convergence test in forward direction */
+/* First apply standard test to bottom of matrix */
+
+ if ((d__2 = e[m - 1], abs(d__2)) <= abs(tol) * (d__1 = d__[m], abs(
+ d__1)) || tol < 0. && (d__3 = e[m - 1], abs(d__3)) <= thresh)
+ {
+ e[m - 1] = 0.;
+ goto L60;
+ }
+
+ if (tol >= 0.) {
+
+/* If relative accuracy desired, */
+/* apply convergence criterion forward */
+
+ mu = (d__1 = d__[ll], abs(d__1));
+ sminl = mu;
+ i__1 = m - 1;
+ for (lll = ll; lll <= i__1; ++lll) {
+ if ((d__1 = e[lll], abs(d__1)) <= tol * mu) {
+ e[lll] = 0.;
+ goto L60;
+ }
+ mu = (d__2 = d__[lll + 1], abs(d__2)) * (mu / (mu + (d__1 = e[
+ lll], abs(d__1))));
+ sminl = min(sminl,mu);
+/* L100: */
+ }
+ }
+
+ } else {
+
+/* Run convergence test in backward direction */
+/* First apply standard test to top of matrix */
+
+ if ((d__2 = e[ll], abs(d__2)) <= abs(tol) * (d__1 = d__[ll], abs(d__1)
+ ) || tol < 0. && (d__3 = e[ll], abs(d__3)) <= thresh) {
+ e[ll] = 0.;
+ goto L60;
+ }
+
+ if (tol >= 0.) {
+
+/* If relative accuracy desired, */
+/* apply convergence criterion backward */
+
+ mu = (d__1 = d__[m], abs(d__1));
+ sminl = mu;
+ i__1 = ll;
+ for (lll = m - 1; lll >= i__1; --lll) {
+ if ((d__1 = e[lll], abs(d__1)) <= tol * mu) {
+ e[lll] = 0.;
+ goto L60;
+ }
+ mu = (d__2 = d__[lll], abs(d__2)) * (mu / (mu + (d__1 = e[lll]
+ , abs(d__1))));
+ sminl = min(sminl,mu);
+/* L110: */
+ }
+ }
+ }
+ oldll = ll;
+ oldm = m;
+
+/* Compute shift. First, test if shifting would ruin relative */
+/* accuracy, and if so set the shift to zero. */
+
+/* Computing MAX */
+ d__1 = eps, d__2 = tol * .01;
+ if (tol >= 0. && *n * tol * (sminl / smax) <= max(d__1,d__2)) {
+
+/* Use a zero shift to avoid loss of relative accuracy */
+
+ shift = 0.;
+ } else {
+
+/* Compute the shift from 2-by-2 block at end of matrix */
+
+ if (idir == 1) {
+ sll = (d__1 = d__[ll], abs(d__1));
+ dlas2_(&d__[m - 1], &e[m - 1], &d__[m], &shift, &r__);
+ } else {
+ sll = (d__1 = d__[m], abs(d__1));
+ dlas2_(&d__[ll], &e[ll], &d__[ll + 1], &shift, &r__);
+ }
+
+/* Test if shift negligible, and if so set to zero */
+
+ if (sll > 0.) {
+/* Computing 2nd power */
+ d__1 = shift / sll;
+ if (d__1 * d__1 < eps) {
+ shift = 0.;
+ }
+ }
+ }
+
+/* Increment iteration count */
+
+ iter = iter + m - ll;
+
+/* If SHIFT = 0, do simplified QR iteration */
+
+ if (shift == 0.) {
+ if (idir == 1) {
+
+/* Chase bulge from top to bottom */
+/* Save cosines and sines for later singular vector updates */
+
+ cs = 1.;
+ oldcs = 1.;
+ i__1 = m - 1;
+ for (i__ = ll; i__ <= i__1; ++i__) {
+ d__1 = d__[i__] * cs;
+ dlartg_(&d__1, &e[i__], &cs, &sn, &r__);
+ if (i__ > ll) {
+ e[i__ - 1] = oldsn * r__;
+ }
+ d__1 = oldcs * r__;
+ d__2 = d__[i__ + 1] * sn;
+ dlartg_(&d__1, &d__2, &oldcs, &oldsn, &d__[i__]);
+ work[i__ - ll + 1] = cs;
+ work[i__ - ll + 1 + nm1] = sn;
+ work[i__ - ll + 1 + nm12] = oldcs;
+ work[i__ - ll + 1 + nm13] = oldsn;
+/* L120: */
+ }
+ h__ = d__[m] * cs;
+ d__[m] = h__ * oldcs;
+ e[m - 1] = h__ * oldsn;
+
+/* Update singular vectors */
+
+ if (*ncvt > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[
+ ll + vt_dim1], ldvt);
+ }
+ if (*nru > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13
+ + 1], &u[ll * u_dim1 + 1], ldu);
+ }
+ if (*ncc > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13
+ + 1], &c__[ll + c_dim1], ldc);
+ }
+
+/* Test convergence */
+
+ if ((d__1 = e[m - 1], abs(d__1)) <= thresh) {
+ e[m - 1] = 0.;
+ }
+
+ } else {
+
+/* Chase bulge from bottom to top */
+/* Save cosines and sines for later singular vector updates */
+
+ cs = 1.;
+ oldcs = 1.;
+ i__1 = ll + 1;
+ for (i__ = m; i__ >= i__1; --i__) {
+ d__1 = d__[i__] * cs;
+ dlartg_(&d__1, &e[i__ - 1], &cs, &sn, &r__);
+ if (i__ < m) {
+ e[i__] = oldsn * r__;
+ }
+ d__1 = oldcs * r__;
+ d__2 = d__[i__ - 1] * sn;
+ dlartg_(&d__1, &d__2, &oldcs, &oldsn, &d__[i__]);
+ work[i__ - ll] = cs;
+ work[i__ - ll + nm1] = -sn;
+ work[i__ - ll + nm12] = oldcs;
+ work[i__ - ll + nm13] = -oldsn;
+/* L130: */
+ }
+ h__ = d__[ll] * cs;
+ d__[ll] = h__ * oldcs;
+ e[ll] = h__ * oldsn;
+
+/* Update singular vectors */
+
+ if (*ncvt > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[
+ nm13 + 1], &vt[ll + vt_dim1], ldvt);
+ }
+ if (*nru > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll *
+ u_dim1 + 1], ldu);
+ }
+ if (*ncc > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[
+ ll + c_dim1], ldc);
+ }
+
+/* Test convergence */
+
+ if ((d__1 = e[ll], abs(d__1)) <= thresh) {
+ e[ll] = 0.;
+ }
+ }
+ } else {
+
+/* Use nonzero shift */
+
+ if (idir == 1) {
+
+/* Chase bulge from top to bottom */
+/* Save cosines and sines for later singular vector updates */
+
+ f = ((d__1 = d__[ll], abs(d__1)) - shift) * (d_sign(&c_b49, &d__[
+ ll]) + shift / d__[ll]);
+ g = e[ll];
+ i__1 = m - 1;
+ for (i__ = ll; i__ <= i__1; ++i__) {
+ dlartg_(&f, &g, &cosr, &sinr, &r__);
+ if (i__ > ll) {
+ e[i__ - 1] = r__;
+ }
+ f = cosr * d__[i__] + sinr * e[i__];
+ e[i__] = cosr * e[i__] - sinr * d__[i__];
+ g = sinr * d__[i__ + 1];
+ d__[i__ + 1] = cosr * d__[i__ + 1];
+ dlartg_(&f, &g, &cosl, &sinl, &r__);
+ d__[i__] = r__;
+ f = cosl * e[i__] + sinl * d__[i__ + 1];
+ d__[i__ + 1] = cosl * d__[i__ + 1] - sinl * e[i__];
+ if (i__ < m - 1) {
+ g = sinl * e[i__ + 1];
+ e[i__ + 1] = cosl * e[i__ + 1];
+ }
+ work[i__ - ll + 1] = cosr;
+ work[i__ - ll + 1 + nm1] = sinr;
+ work[i__ - ll + 1 + nm12] = cosl;
+ work[i__ - ll + 1 + nm13] = sinl;
+/* L140: */
+ }
+ e[m - 1] = f;
+
+/* Update singular vectors */
+
+ if (*ncvt > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[
+ ll + vt_dim1], ldvt);
+ }
+ if (*nru > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13
+ + 1], &u[ll * u_dim1 + 1], ldu);
+ }
+ if (*ncc > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13
+ + 1], &c__[ll + c_dim1], ldc);
+ }
+
+/* Test convergence */
+
+ if ((d__1 = e[m - 1], abs(d__1)) <= thresh) {
+ e[m - 1] = 0.;
+ }
+
+ } else {
+
+/* Chase bulge from bottom to top */
+/* Save cosines and sines for later singular vector updates */
+
+ f = ((d__1 = d__[m], abs(d__1)) - shift) * (d_sign(&c_b49, &d__[m]
+ ) + shift / d__[m]);
+ g = e[m - 1];
+ i__1 = ll + 1;
+ for (i__ = m; i__ >= i__1; --i__) {
+ dlartg_(&f, &g, &cosr, &sinr, &r__);
+ if (i__ < m) {
+ e[i__] = r__;
+ }
+ f = cosr * d__[i__] + sinr * e[i__ - 1];
+ e[i__ - 1] = cosr * e[i__ - 1] - sinr * d__[i__];
+ g = sinr * d__[i__ - 1];
+ d__[i__ - 1] = cosr * d__[i__ - 1];
+ dlartg_(&f, &g, &cosl, &sinl, &r__);
+ d__[i__] = r__;
+ f = cosl * e[i__ - 1] + sinl * d__[i__ - 1];
+ d__[i__ - 1] = cosl * d__[i__ - 1] - sinl * e[i__ - 1];
+ if (i__ > ll + 1) {
+ g = sinl * e[i__ - 2];
+ e[i__ - 2] = cosl * e[i__ - 2];
+ }
+ work[i__ - ll] = cosr;
+ work[i__ - ll + nm1] = -sinr;
+ work[i__ - ll + nm12] = cosl;
+ work[i__ - ll + nm13] = -sinl;
+/* L150: */
+ }
+ e[ll] = f;
+
+/* Test convergence */
+
+ if ((d__1 = e[ll], abs(d__1)) <= thresh) {
+ e[ll] = 0.;
+ }
+
+/* Update singular vectors if desired */
+
+ if (*ncvt > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[
+ nm13 + 1], &vt[ll + vt_dim1], ldvt);
+ }
+ if (*nru > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll *
+ u_dim1 + 1], ldu);
+ }
+ if (*ncc > 0) {
+ i__1 = m - ll + 1;
+ dlasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[
+ ll + c_dim1], ldc);
+ }
+ }
+ }
+
+/* QR iteration finished, go back and check convergence */
+
+ goto L60;
+
+/* All singular values converged, so make them positive */
+
+L160:
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (d__[i__] < 0.) {
+ d__[i__] = -d__[i__];
+
+/* Change sign of singular vectors, if desired */
+
+ if (*ncvt > 0) {
+ dscal_(ncvt, &c_b72, &vt[i__ + vt_dim1], ldvt);
+ }
+ }
+/* L170: */
+ }
+
+/* Sort the singular values into decreasing order (insertion sort on */
+/* singular values, but only one transposition per singular vector) */
+
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+
+/* Scan for smallest D(I) */
+
+ isub = 1;
+ smin = d__[1];
+ i__2 = *n + 1 - i__;
+ for (j = 2; j <= i__2; ++j) {
+ if (d__[j] <= smin) {
+ isub = j;
+ smin = d__[j];
+ }
+/* L180: */
+ }
+ if (isub != *n + 1 - i__) {
+
+/* Swap singular values and vectors */
+
+ d__[isub] = d__[*n + 1 - i__];
+ d__[*n + 1 - i__] = smin;
+ if (*ncvt > 0) {
+ dswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[*n + 1 - i__ +
+ vt_dim1], ldvt);
+ }
+ if (*nru > 0) {
+ dswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[(*n + 1 - i__) *
+ u_dim1 + 1], &c__1);
+ }
+ if (*ncc > 0) {
+ dswap_(ncc, &c__[isub + c_dim1], ldc, &c__[*n + 1 - i__ +
+ c_dim1], ldc);
+ }
+ }
+/* L190: */
+ }
+ goto L220;
+
+/* Maximum number of iterations exceeded, failure to converge */
+
+L200:
+ *info = 0;
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (e[i__] != 0.) {
+ ++(*info);
+ }
+/* L210: */
+ }
+L220:
+ return 0;
+
+/* End of DBDSQR */
+
+} /* dbdsqr_ */