aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dbdsdc.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dbdsdc.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dbdsdc.c')
-rw-r--r--contrib/libs/clapack/dbdsdc.c514
1 files changed, 514 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dbdsdc.c b/contrib/libs/clapack/dbdsdc.c
new file mode 100644
index 0000000000..6096e4faae
--- /dev/null
+++ b/contrib/libs/clapack/dbdsdc.c
@@ -0,0 +1,514 @@
+/* dbdsdc.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__9 = 9;
+static integer c__0 = 0;
+static doublereal c_b15 = 1.;
+static integer c__1 = 1;
+static doublereal c_b29 = 0.;
+
+/* Subroutine */ int dbdsdc_(char *uplo, char *compq, integer *n, doublereal *
+ d__, doublereal *e, doublereal *u, integer *ldu, doublereal *vt,
+ integer *ldvt, doublereal *q, integer *iq, doublereal *work, integer *
+ iwork, integer *info)
+{
+ /* System generated locals */
+ integer u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2;
+ doublereal d__1;
+
+ /* Builtin functions */
+ double d_sign(doublereal *, doublereal *), log(doublereal);
+
+ /* Local variables */
+ integer i__, j, k;
+ doublereal p, r__;
+ integer z__, ic, ii, kk;
+ doublereal cs;
+ integer is, iu;
+ doublereal sn;
+ integer nm1;
+ doublereal eps;
+ integer ivt, difl, difr, ierr, perm, mlvl, sqre;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int dlasr_(char *, char *, char *, integer *,
+ integer *, doublereal *, doublereal *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer *
+, doublereal *, integer *), dswap_(integer *, doublereal *,
+ integer *, doublereal *, integer *);
+ integer poles, iuplo, nsize, start;
+ extern /* Subroutine */ int dlasd0_(integer *, integer *, doublereal *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *,
+ integer *, integer *, doublereal *, integer *);
+ extern doublereal dlamch_(char *);
+ extern /* Subroutine */ int dlasda_(integer *, integer *, integer *,
+ integer *, doublereal *, doublereal *, doublereal *, integer *,
+ doublereal *, integer *, doublereal *, doublereal *, doublereal *,
+ doublereal *, integer *, integer *, integer *, integer *,
+ doublereal *, doublereal *, doublereal *, doublereal *, integer *,
+ integer *), dlascl_(char *, integer *, integer *, doublereal *,
+ doublereal *, integer *, integer *, doublereal *, integer *,
+ integer *), dlasdq_(char *, integer *, integer *, integer
+ *, integer *, integer *, doublereal *, doublereal *, doublereal *,
+ integer *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, integer *), dlaset_(char *, integer *,
+ integer *, doublereal *, doublereal *, doublereal *, integer *), dlartg_(doublereal *, doublereal *, doublereal *,
+ doublereal *, doublereal *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ integer givcol;
+ extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
+ integer icompq;
+ doublereal orgnrm;
+ integer givnum, givptr, qstart, smlsiz, wstart, smlszp;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DBDSDC computes the singular value decomposition (SVD) of a real */
+/* N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT, */
+/* using a divide and conquer method, where S is a diagonal matrix */
+/* with non-negative diagonal elements (the singular values of B), and */
+/* U and VT are orthogonal matrices of left and right singular vectors, */
+/* respectively. DBDSDC can be used to compute all singular values, */
+/* and optionally, singular vectors or singular vectors in compact form. */
+
+/* This code makes very mild assumptions about floating point */
+/* arithmetic. It will work on machines with a guard digit in */
+/* add/subtract, or on those binary machines without guard digits */
+/* which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
+/* It could conceivably fail on hexadecimal or decimal machines */
+/* without guard digits, but we know of none. See DLASD3 for details. */
+
+/* The code currently calls DLASDQ if singular values only are desired. */
+/* However, it can be slightly modified to compute singular values */
+/* using the divide and conquer method. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': B is upper bidiagonal. */
+/* = 'L': B is lower bidiagonal. */
+
+/* COMPQ (input) CHARACTER*1 */
+/* Specifies whether singular vectors are to be computed */
+/* as follows: */
+/* = 'N': Compute singular values only; */
+/* = 'P': Compute singular values and compute singular */
+/* vectors in compact form; */
+/* = 'I': Compute singular values and singular vectors. */
+
+/* N (input) INTEGER */
+/* The order of the matrix B. N >= 0. */
+
+/* D (input/output) DOUBLE PRECISION array, dimension (N) */
+/* On entry, the n diagonal elements of the bidiagonal matrix B. */
+/* On exit, if INFO=0, the singular values of B. */
+
+/* E (input/output) DOUBLE PRECISION array, dimension (N-1) */
+/* On entry, the elements of E contain the offdiagonal */
+/* elements of the bidiagonal matrix whose SVD is desired. */
+/* On exit, E has been destroyed. */
+
+/* U (output) DOUBLE PRECISION array, dimension (LDU,N) */
+/* If COMPQ = 'I', then: */
+/* On exit, if INFO = 0, U contains the left singular vectors */
+/* of the bidiagonal matrix. */
+/* For other values of COMPQ, U is not referenced. */
+
+/* LDU (input) INTEGER */
+/* The leading dimension of the array U. LDU >= 1. */
+/* If singular vectors are desired, then LDU >= max( 1, N ). */
+
+/* VT (output) DOUBLE PRECISION array, dimension (LDVT,N) */
+/* If COMPQ = 'I', then: */
+/* On exit, if INFO = 0, VT' contains the right singular */
+/* vectors of the bidiagonal matrix. */
+/* For other values of COMPQ, VT is not referenced. */
+
+/* LDVT (input) INTEGER */
+/* The leading dimension of the array VT. LDVT >= 1. */
+/* If singular vectors are desired, then LDVT >= max( 1, N ). */
+
+/* Q (output) DOUBLE PRECISION array, dimension (LDQ) */
+/* If COMPQ = 'P', then: */
+/* On exit, if INFO = 0, Q and IQ contain the left */
+/* and right singular vectors in a compact form, */
+/* requiring O(N log N) space instead of 2*N**2. */
+/* In particular, Q contains all the DOUBLE PRECISION data in */
+/* LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1)))) */
+/* words of memory, where SMLSIZ is returned by ILAENV and */
+/* is equal to the maximum size of the subproblems at the */
+/* bottom of the computation tree (usually about 25). */
+/* For other values of COMPQ, Q is not referenced. */
+
+/* IQ (output) INTEGER array, dimension (LDIQ) */
+/* If COMPQ = 'P', then: */
+/* On exit, if INFO = 0, Q and IQ contain the left */
+/* and right singular vectors in a compact form, */
+/* requiring O(N log N) space instead of 2*N**2. */
+/* In particular, IQ contains all INTEGER data in */
+/* LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1)))) */
+/* words of memory, where SMLSIZ is returned by ILAENV and */
+/* is equal to the maximum size of the subproblems at the */
+/* bottom of the computation tree (usually about 25). */
+/* For other values of COMPQ, IQ is not referenced. */
+
+/* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
+/* If COMPQ = 'N' then LWORK >= (4 * N). */
+/* If COMPQ = 'P' then LWORK >= (6 * N). */
+/* If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N). */
+
+/* IWORK (workspace) INTEGER array, dimension (8*N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit. */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+/* > 0: The algorithm failed to compute an singular value. */
+/* The update process of divide and conquer failed. */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Ming Gu and Huan Ren, Computer Science Division, University of */
+/* California at Berkeley, USA */
+
+/* ===================================================================== */
+/* Changed dimension statement in comment describing E from (N) to */
+/* (N-1). Sven, 17 Feb 05. */
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --d__;
+ --e;
+ u_dim1 = *ldu;
+ u_offset = 1 + u_dim1;
+ u -= u_offset;
+ vt_dim1 = *ldvt;
+ vt_offset = 1 + vt_dim1;
+ vt -= vt_offset;
+ --q;
+ --iq;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ *info = 0;
+
+ iuplo = 0;
+ if (lsame_(uplo, "U")) {
+ iuplo = 1;
+ }
+ if (lsame_(uplo, "L")) {
+ iuplo = 2;
+ }
+ if (lsame_(compq, "N")) {
+ icompq = 0;
+ } else if (lsame_(compq, "P")) {
+ icompq = 1;
+ } else if (lsame_(compq, "I")) {
+ icompq = 2;
+ } else {
+ icompq = -1;
+ }
+ if (iuplo == 0) {
+ *info = -1;
+ } else if (icompq < 0) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*ldu < 1 || icompq == 2 && *ldu < *n) {
+ *info = -7;
+ } else if (*ldvt < 1 || icompq == 2 && *ldvt < *n) {
+ *info = -9;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DBDSDC", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+ smlsiz = ilaenv_(&c__9, "DBDSDC", " ", &c__0, &c__0, &c__0, &c__0);
+ if (*n == 1) {
+ if (icompq == 1) {
+ q[1] = d_sign(&c_b15, &d__[1]);
+ q[smlsiz * *n + 1] = 1.;
+ } else if (icompq == 2) {
+ u[u_dim1 + 1] = d_sign(&c_b15, &d__[1]);
+ vt[vt_dim1 + 1] = 1.;
+ }
+ d__[1] = abs(d__[1]);
+ return 0;
+ }
+ nm1 = *n - 1;
+
+/* If matrix lower bidiagonal, rotate to be upper bidiagonal */
+/* by applying Givens rotations on the left */
+
+ wstart = 1;
+ qstart = 3;
+ if (icompq == 1) {
+ dcopy_(n, &d__[1], &c__1, &q[1], &c__1);
+ i__1 = *n - 1;
+ dcopy_(&i__1, &e[1], &c__1, &q[*n + 1], &c__1);
+ }
+ if (iuplo == 2) {
+ qstart = 5;
+ wstart = (*n << 1) - 1;
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
+ d__[i__] = r__;
+ e[i__] = sn * d__[i__ + 1];
+ d__[i__ + 1] = cs * d__[i__ + 1];
+ if (icompq == 1) {
+ q[i__ + (*n << 1)] = cs;
+ q[i__ + *n * 3] = sn;
+ } else if (icompq == 2) {
+ work[i__] = cs;
+ work[nm1 + i__] = -sn;
+ }
+/* L10: */
+ }
+ }
+
+/* If ICOMPQ = 0, use DLASDQ to compute the singular values. */
+
+ if (icompq == 0) {
+ dlasdq_("U", &c__0, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
+ vt_offset], ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
+ wstart], info);
+ goto L40;
+ }
+
+/* If N is smaller than the minimum divide size SMLSIZ, then solve */
+/* the problem with another solver. */
+
+ if (*n <= smlsiz) {
+ if (icompq == 2) {
+ dlaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
+ dlaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
+ dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
+, ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
+ wstart], info);
+ } else if (icompq == 1) {
+ iu = 1;
+ ivt = iu + *n;
+ dlaset_("A", n, n, &c_b29, &c_b15, &q[iu + (qstart - 1) * *n], n);
+ dlaset_("A", n, n, &c_b29, &c_b15, &q[ivt + (qstart - 1) * *n], n);
+ dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &q[ivt + (
+ qstart - 1) * *n], n, &q[iu + (qstart - 1) * *n], n, &q[
+ iu + (qstart - 1) * *n], n, &work[wstart], info);
+ }
+ goto L40;
+ }
+
+ if (icompq == 2) {
+ dlaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
+ dlaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
+ }
+
+/* Scale. */
+
+ orgnrm = dlanst_("M", n, &d__[1], &e[1]);
+ if (orgnrm == 0.) {
+ return 0;
+ }
+ dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, n, &c__1, &d__[1], n, &ierr);
+ dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &nm1, &c__1, &e[1], &nm1, &
+ ierr);
+
+ eps = dlamch_("Epsilon");
+
+ mlvl = (integer) (log((doublereal) (*n) / (doublereal) (smlsiz + 1)) /
+ log(2.)) + 1;
+ smlszp = smlsiz + 1;
+
+ if (icompq == 1) {
+ iu = 1;
+ ivt = smlsiz + 1;
+ difl = ivt + smlszp;
+ difr = difl + mlvl;
+ z__ = difr + (mlvl << 1);
+ ic = z__ + mlvl;
+ is = ic + 1;
+ poles = is + 1;
+ givnum = poles + (mlvl << 1);
+
+ k = 1;
+ givptr = 2;
+ perm = 3;
+ givcol = perm + mlvl;
+ }
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if ((d__1 = d__[i__], abs(d__1)) < eps) {
+ d__[i__] = d_sign(&eps, &d__[i__]);
+ }
+/* L20: */
+ }
+
+ start = 1;
+ sqre = 0;
+
+ i__1 = nm1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {
+
+/* Subproblem found. First determine its size and then */
+/* apply divide and conquer on it. */
+
+ if (i__ < nm1) {
+
+/* A subproblem with E(I) small for I < NM1. */
+
+ nsize = i__ - start + 1;
+ } else if ((d__1 = e[i__], abs(d__1)) >= eps) {
+
+/* A subproblem with E(NM1) not too small but I = NM1. */
+
+ nsize = *n - start + 1;
+ } else {
+
+/* A subproblem with E(NM1) small. This implies an */
+/* 1-by-1 subproblem at D(N). Solve this 1-by-1 problem */
+/* first. */
+
+ nsize = i__ - start + 1;
+ if (icompq == 2) {
+ u[*n + *n * u_dim1] = d_sign(&c_b15, &d__[*n]);
+ vt[*n + *n * vt_dim1] = 1.;
+ } else if (icompq == 1) {
+ q[*n + (qstart - 1) * *n] = d_sign(&c_b15, &d__[*n]);
+ q[*n + (smlsiz + qstart - 1) * *n] = 1.;
+ }
+ d__[*n] = (d__1 = d__[*n], abs(d__1));
+ }
+ if (icompq == 2) {
+ dlasd0_(&nsize, &sqre, &d__[start], &e[start], &u[start +
+ start * u_dim1], ldu, &vt[start + start * vt_dim1],
+ ldvt, &smlsiz, &iwork[1], &work[wstart], info);
+ } else {
+ dlasda_(&icompq, &smlsiz, &nsize, &sqre, &d__[start], &e[
+ start], &q[start + (iu + qstart - 2) * *n], n, &q[
+ start + (ivt + qstart - 2) * *n], &iq[start + k * *n],
+ &q[start + (difl + qstart - 2) * *n], &q[start + (
+ difr + qstart - 2) * *n], &q[start + (z__ + qstart -
+ 2) * *n], &q[start + (poles + qstart - 2) * *n], &iq[
+ start + givptr * *n], &iq[start + givcol * *n], n, &
+ iq[start + perm * *n], &q[start + (givnum + qstart -
+ 2) * *n], &q[start + (ic + qstart - 2) * *n], &q[
+ start + (is + qstart - 2) * *n], &work[wstart], &
+ iwork[1], info);
+ if (*info != 0) {
+ return 0;
+ }
+ }
+ start = i__ + 1;
+ }
+/* L30: */
+ }
+
+/* Unscale */
+
+ dlascl_("G", &c__0, &c__0, &c_b15, &orgnrm, n, &c__1, &d__[1], n, &ierr);
+L40:
+
+/* Use Selection Sort to minimize swaps of singular vectors */
+
+ i__1 = *n;
+ for (ii = 2; ii <= i__1; ++ii) {
+ i__ = ii - 1;
+ kk = i__;
+ p = d__[i__];
+ i__2 = *n;
+ for (j = ii; j <= i__2; ++j) {
+ if (d__[j] > p) {
+ kk = j;
+ p = d__[j];
+ }
+/* L50: */
+ }
+ if (kk != i__) {
+ d__[kk] = d__[i__];
+ d__[i__] = p;
+ if (icompq == 1) {
+ iq[i__] = kk;
+ } else if (icompq == 2) {
+ dswap_(n, &u[i__ * u_dim1 + 1], &c__1, &u[kk * u_dim1 + 1], &
+ c__1);
+ dswap_(n, &vt[i__ + vt_dim1], ldvt, &vt[kk + vt_dim1], ldvt);
+ }
+ } else if (icompq == 1) {
+ iq[i__] = i__;
+ }
+/* L60: */
+ }
+
+/* If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO */
+
+ if (icompq == 1) {
+ if (iuplo == 1) {
+ iq[*n] = 1;
+ } else {
+ iq[*n] = 0;
+ }
+ }
+
+/* If B is lower bidiagonal, update U by those Givens rotations */
+/* which rotated B to be upper bidiagonal */
+
+ if (iuplo == 2 && icompq == 2) {
+ dlasr_("L", "V", "B", n, n, &work[1], &work[*n], &u[u_offset], ldu);
+ }
+
+ return 0;
+
+/* End of DBDSDC */
+
+} /* dbdsdc_ */