diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cungbr.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cungbr.c')
-rw-r--r-- | contrib/libs/clapack/cungbr.c | 309 |
1 files changed, 309 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cungbr.c b/contrib/libs/clapack/cungbr.c new file mode 100644 index 0000000000..c8369b06f8 --- /dev/null +++ b/contrib/libs/clapack/cungbr.c @@ -0,0 +1,309 @@ +/* cungbr.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c_n1 = -1; + +/* Subroutine */ int cungbr_(char *vect, integer *m, integer *n, integer *k, + complex *a, integer *lda, complex *tau, complex *work, integer *lwork, + integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3; + + /* Local variables */ + integer i__, j, nb, mn; + extern logical lsame_(char *, char *); + integer iinfo; + logical wantq; + extern /* Subroutine */ int xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + extern /* Subroutine */ int cunglq_(integer *, integer *, integer *, + complex *, integer *, complex *, complex *, integer *, integer *), + cungqr_(integer *, integer *, integer *, complex *, integer *, + complex *, complex *, integer *, integer *); + integer lwkopt; + logical lquery; + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CUNGBR generates one of the complex unitary matrices Q or P**H */ +/* determined by CGEBRD when reducing a complex matrix A to bidiagonal */ +/* form: A = Q * B * P**H. Q and P**H are defined as products of */ +/* elementary reflectors H(i) or G(i) respectively. */ + +/* If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q */ +/* is of order M: */ +/* if m >= k, Q = H(1) H(2) . . . H(k) and CUNGBR returns the first n */ +/* columns of Q, where m >= n >= k; */ +/* if m < k, Q = H(1) H(2) . . . H(m-1) and CUNGBR returns Q as an */ +/* M-by-M matrix. */ + +/* If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**H */ +/* is of order N: */ +/* if k < n, P**H = G(k) . . . G(2) G(1) and CUNGBR returns the first m */ +/* rows of P**H, where n >= m >= k; */ +/* if k >= n, P**H = G(n-1) . . . G(2) G(1) and CUNGBR returns P**H as */ +/* an N-by-N matrix. */ + +/* Arguments */ +/* ========= */ + +/* VECT (input) CHARACTER*1 */ +/* Specifies whether the matrix Q or the matrix P**H is */ +/* required, as defined in the transformation applied by CGEBRD: */ +/* = 'Q': generate Q; */ +/* = 'P': generate P**H. */ + +/* M (input) INTEGER */ +/* The number of rows of the matrix Q or P**H to be returned. */ +/* M >= 0. */ + +/* N (input) INTEGER */ +/* The number of columns of the matrix Q or P**H to be returned. */ +/* N >= 0. */ +/* If VECT = 'Q', M >= N >= min(M,K); */ +/* if VECT = 'P', N >= M >= min(N,K). */ + +/* K (input) INTEGER */ +/* If VECT = 'Q', the number of columns in the original M-by-K */ +/* matrix reduced by CGEBRD. */ +/* If VECT = 'P', the number of rows in the original K-by-N */ +/* matrix reduced by CGEBRD. */ +/* K >= 0. */ + +/* A (input/output) COMPLEX array, dimension (LDA,N) */ +/* On entry, the vectors which define the elementary reflectors, */ +/* as returned by CGEBRD. */ +/* On exit, the M-by-N matrix Q or P**H. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= M. */ + +/* TAU (input) COMPLEX array, dimension */ +/* (min(M,K)) if VECT = 'Q' */ +/* (min(N,K)) if VECT = 'P' */ +/* TAU(i) must contain the scalar factor of the elementary */ +/* reflector H(i) or G(i), which determines Q or P**H, as */ +/* returned by CGEBRD in its array argument TAUQ or TAUP. */ + +/* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The dimension of the array WORK. LWORK >= max(1,min(M,N)). */ +/* For optimum performance LWORK >= min(M,N)*NB, where NB */ +/* is the optimal blocksize. */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the optimal size of the WORK array, returns */ +/* this value as the first entry of the WORK array, and no error */ +/* message related to LWORK is issued by XERBLA. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input arguments */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + --work; + + /* Function Body */ + *info = 0; + wantq = lsame_(vect, "Q"); + mn = min(*m,*n); + lquery = *lwork == -1; + if (! wantq && ! lsame_(vect, "P")) { + *info = -1; + } else if (*m < 0) { + *info = -2; + } else if (*n < 0 || wantq && (*n > *m || *n < min(*m,*k)) || ! wantq && ( + *m > *n || *m < min(*n,*k))) { + *info = -3; + } else if (*k < 0) { + *info = -4; + } else if (*lda < max(1,*m)) { + *info = -6; + } else if (*lwork < max(1,mn) && ! lquery) { + *info = -9; + } + + if (*info == 0) { + if (wantq) { + nb = ilaenv_(&c__1, "CUNGQR", " ", m, n, k, &c_n1); + } else { + nb = ilaenv_(&c__1, "CUNGLQ", " ", m, n, k, &c_n1); + } + lwkopt = max(1,mn) * nb; + work[1].r = (real) lwkopt, work[1].i = 0.f; + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("CUNGBR", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*m == 0 || *n == 0) { + work[1].r = 1.f, work[1].i = 0.f; + return 0; + } + + if (wantq) { + +/* Form Q, determined by a call to CGEBRD to reduce an m-by-k */ +/* matrix */ + + if (*m >= *k) { + +/* If m >= k, assume m >= n >= k */ + + cungqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, & + iinfo); + + } else { + +/* If m < k, assume m = n */ + +/* Shift the vectors which define the elementary reflectors one */ +/* column to the right, and set the first row and column of Q */ +/* to those of the unit matrix */ + + for (j = *m; j >= 2; --j) { + i__1 = j * a_dim1 + 1; + a[i__1].r = 0.f, a[i__1].i = 0.f; + i__1 = *m; + for (i__ = j + 1; i__ <= i__1; ++i__) { + i__2 = i__ + j * a_dim1; + i__3 = i__ + (j - 1) * a_dim1; + a[i__2].r = a[i__3].r, a[i__2].i = a[i__3].i; +/* L10: */ + } +/* L20: */ + } + i__1 = a_dim1 + 1; + a[i__1].r = 1.f, a[i__1].i = 0.f; + i__1 = *m; + for (i__ = 2; i__ <= i__1; ++i__) { + i__2 = i__ + a_dim1; + a[i__2].r = 0.f, a[i__2].i = 0.f; +/* L30: */ + } + if (*m > 1) { + +/* Form Q(2:m,2:m) */ + + i__1 = *m - 1; + i__2 = *m - 1; + i__3 = *m - 1; + cungqr_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[ + 1], &work[1], lwork, &iinfo); + } + } + } else { + +/* Form P', determined by a call to CGEBRD to reduce a k-by-n */ +/* matrix */ + + if (*k < *n) { + +/* If k < n, assume k <= m <= n */ + + cunglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, & + iinfo); + + } else { + +/* If k >= n, assume m = n */ + +/* Shift the vectors which define the elementary reflectors one */ +/* row downward, and set the first row and column of P' to */ +/* those of the unit matrix */ + + i__1 = a_dim1 + 1; + a[i__1].r = 1.f, a[i__1].i = 0.f; + i__1 = *n; + for (i__ = 2; i__ <= i__1; ++i__) { + i__2 = i__ + a_dim1; + a[i__2].r = 0.f, a[i__2].i = 0.f; +/* L40: */ + } + i__1 = *n; + for (j = 2; j <= i__1; ++j) { + for (i__ = j - 1; i__ >= 2; --i__) { + i__2 = i__ + j * a_dim1; + i__3 = i__ - 1 + j * a_dim1; + a[i__2].r = a[i__3].r, a[i__2].i = a[i__3].i; +/* L50: */ + } + i__2 = j * a_dim1 + 1; + a[i__2].r = 0.f, a[i__2].i = 0.f; +/* L60: */ + } + if (*n > 1) { + +/* Form P'(2:n,2:n) */ + + i__1 = *n - 1; + i__2 = *n - 1; + i__3 = *n - 1; + cunglq_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[ + 1], &work[1], lwork, &iinfo); + } + } + } + work[1].r = (real) lwkopt, work[1].i = 0.f; + return 0; + +/* End of CUNGBR */ + +} /* cungbr_ */ |