aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/ctzrzf.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ctzrzf.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ctzrzf.c')
-rw-r--r--contrib/libs/clapack/ctzrzf.c310
1 files changed, 310 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ctzrzf.c b/contrib/libs/clapack/ctzrzf.c
new file mode 100644
index 0000000000..759ccba1a7
--- /dev/null
+++ b/contrib/libs/clapack/ctzrzf.c
@@ -0,0 +1,310 @@
+/* ctzrzf.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c_n1 = -1;
+static integer c__3 = 3;
+static integer c__2 = 2;
+
+/* Subroutine */ int ctzrzf_(integer *m, integer *n, complex *a, integer *lda,
+ complex *tau, complex *work, integer *lwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+
+ /* Local variables */
+ integer i__, m1, ib, nb, ki, kk, mu, nx, iws, nbmin;
+ extern /* Subroutine */ int clarzb_(char *, char *, char *, char *,
+ integer *, integer *, integer *, integer *, complex *, integer *,
+ complex *, integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ extern /* Subroutine */ int clarzt_(char *, char *, integer *, integer *,
+ complex *, integer *, complex *, complex *, integer *), clatrz_(integer *, integer *, integer *, complex *,
+ integer *, complex *, complex *);
+ integer ldwork, lwkopt;
+ logical lquery;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CTZRZF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A */
+/* to upper triangular form by means of unitary transformations. */
+
+/* The upper trapezoidal matrix A is factored as */
+
+/* A = ( R 0 ) * Z, */
+
+/* where Z is an N-by-N unitary matrix and R is an M-by-M upper */
+/* triangular matrix. */
+
+/* Arguments */
+/* ========= */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix A. M >= 0. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrix A. N >= M. */
+
+/* A (input/output) COMPLEX array, dimension (LDA,N) */
+/* On entry, the leading M-by-N upper trapezoidal part of the */
+/* array A must contain the matrix to be factorized. */
+/* On exit, the leading M-by-M upper triangular part of A */
+/* contains the upper triangular matrix R, and elements M+1 to */
+/* N of the first M rows of A, with the array TAU, represent the */
+/* unitary matrix Z as a product of M elementary reflectors. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,M). */
+
+/* TAU (output) COMPLEX array, dimension (M) */
+/* The scalar factors of the elementary reflectors. */
+
+/* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. LWORK >= max(1,M). */
+/* For optimum performance LWORK >= M*NB, where NB is */
+/* the optimal blocksize. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
+
+/* The factorization is obtained by Householder's method. The kth */
+/* transformation matrix, Z( k ), which is used to introduce zeros into */
+/* the ( m - k + 1 )th row of A, is given in the form */
+
+/* Z( k ) = ( I 0 ), */
+/* ( 0 T( k ) ) */
+
+/* where */
+
+/* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), */
+/* ( 0 ) */
+/* ( z( k ) ) */
+
+/* tau is a scalar and z( k ) is an ( n - m ) element vector. */
+/* tau and z( k ) are chosen to annihilate the elements of the kth row */
+/* of X. */
+
+/* The scalar tau is returned in the kth element of TAU and the vector */
+/* u( k ) in the kth row of A, such that the elements of z( k ) are */
+/* in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */
+/* the upper triangular part of A. */
+
+/* Z is given by */
+
+/* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input arguments */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --tau;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ lquery = *lwork == -1;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < *m) {
+ *info = -2;
+ } else if (*lda < max(1,*m)) {
+ *info = -4;
+ } else if (*lwork < max(1,*m) && ! lquery) {
+ *info = -7;
+ }
+
+ if (*info == 0) {
+ if (*m == 0 || *m == *n) {
+ lwkopt = 1;
+ } else {
+
+/* Determine the block size. */
+
+ nb = ilaenv_(&c__1, "CGERQF", " ", m, n, &c_n1, &c_n1);
+ lwkopt = *m * nb;
+ }
+ work[1].r = (real) lwkopt, work[1].i = 0.f;
+
+ if (*lwork < max(1,*m) && ! lquery) {
+ *info = -7;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CTZRZF", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0) {
+ return 0;
+ } else if (*m == *n) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ tau[i__2].r = 0.f, tau[i__2].i = 0.f;
+/* L10: */
+ }
+ return 0;
+ }
+
+ nbmin = 2;
+ nx = 1;
+ iws = *m;
+ if (nb > 1 && nb < *m) {
+
+/* Determine when to cross over from blocked to unblocked code. */
+
+/* Computing MAX */
+ i__1 = 0, i__2 = ilaenv_(&c__3, "CGERQF", " ", m, n, &c_n1, &c_n1);
+ nx = max(i__1,i__2);
+ if (nx < *m) {
+
+/* Determine if workspace is large enough for blocked code. */
+
+ ldwork = *m;
+ iws = ldwork * nb;
+ if (*lwork < iws) {
+
+/* Not enough workspace to use optimal NB: reduce NB and */
+/* determine the minimum value of NB. */
+
+ nb = *lwork / ldwork;
+/* Computing MAX */
+ i__1 = 2, i__2 = ilaenv_(&c__2, "CGERQF", " ", m, n, &c_n1, &
+ c_n1);
+ nbmin = max(i__1,i__2);
+ }
+ }
+ }
+
+ if (nb >= nbmin && nb < *m && nx < *m) {
+
+/* Use blocked code initially. */
+/* The last kk rows are handled by the block method. */
+
+/* Computing MIN */
+ i__1 = *m + 1;
+ m1 = min(i__1,*n);
+ ki = (*m - nx - 1) / nb * nb;
+/* Computing MIN */
+ i__1 = *m, i__2 = ki + nb;
+ kk = min(i__1,i__2);
+
+ i__1 = *m - kk + 1;
+ i__2 = -nb;
+ for (i__ = *m - kk + ki + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1;
+ i__ += i__2) {
+/* Computing MIN */
+ i__3 = *m - i__ + 1;
+ ib = min(i__3,nb);
+
+/* Compute the TZ factorization of the current block */
+/* A(i:i+ib-1,i:n) */
+
+ i__3 = *n - i__ + 1;
+ i__4 = *n - *m;
+ clatrz_(&ib, &i__3, &i__4, &a[i__ + i__ * a_dim1], lda, &tau[i__],
+ &work[1]);
+ if (i__ > 1) {
+
+/* Form the triangular factor of the block reflector */
+/* H = H(i+ib-1) . . . H(i+1) H(i) */
+
+ i__3 = *n - *m;
+ clarzt_("Backward", "Rowwise", &i__3, &ib, &a[i__ + m1 *
+ a_dim1], lda, &tau[i__], &work[1], &ldwork);
+
+/* Apply H to A(1:i-1,i:n) from the right */
+
+ i__3 = i__ - 1;
+ i__4 = *n - i__ + 1;
+ i__5 = *n - *m;
+ clarzb_("Right", "No transpose", "Backward", "Rowwise", &i__3,
+ &i__4, &ib, &i__5, &a[i__ + m1 * a_dim1], lda, &work[
+ 1], &ldwork, &a[i__ * a_dim1 + 1], lda, &work[ib + 1],
+ &ldwork)
+ ;
+ }
+/* L20: */
+ }
+ mu = i__ + nb - 1;
+ } else {
+ mu = *m;
+ }
+
+/* Use unblocked code to factor the last or only block */
+
+ if (mu > 0) {
+ i__2 = *n - *m;
+ clatrz_(&mu, n, &i__2, &a[a_offset], lda, &tau[1], &work[1]);
+ }
+
+ work[1].r = (real) lwkopt, work[1].i = 0.f;
+
+ return 0;
+
+/* End of CTZRZF */
+
+} /* ctzrzf_ */