diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ctzrzf.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ctzrzf.c')
-rw-r--r-- | contrib/libs/clapack/ctzrzf.c | 310 |
1 files changed, 310 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ctzrzf.c b/contrib/libs/clapack/ctzrzf.c new file mode 100644 index 0000000000..759ccba1a7 --- /dev/null +++ b/contrib/libs/clapack/ctzrzf.c @@ -0,0 +1,310 @@ +/* ctzrzf.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c_n1 = -1; +static integer c__3 = 3; +static integer c__2 = 2; + +/* Subroutine */ int ctzrzf_(integer *m, integer *n, complex *a, integer *lda, + complex *tau, complex *work, integer *lwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + + /* Local variables */ + integer i__, m1, ib, nb, ki, kk, mu, nx, iws, nbmin; + extern /* Subroutine */ int clarzb_(char *, char *, char *, char *, + integer *, integer *, integer *, integer *, complex *, integer *, + complex *, integer *, complex *, integer *, complex *, integer *), xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + extern /* Subroutine */ int clarzt_(char *, char *, integer *, integer *, + complex *, integer *, complex *, complex *, integer *), clatrz_(integer *, integer *, integer *, complex *, + integer *, complex *, complex *); + integer ldwork, lwkopt; + logical lquery; + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CTZRZF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A */ +/* to upper triangular form by means of unitary transformations. */ + +/* The upper trapezoidal matrix A is factored as */ + +/* A = ( R 0 ) * Z, */ + +/* where Z is an N-by-N unitary matrix and R is an M-by-M upper */ +/* triangular matrix. */ + +/* Arguments */ +/* ========= */ + +/* M (input) INTEGER */ +/* The number of rows of the matrix A. M >= 0. */ + +/* N (input) INTEGER */ +/* The number of columns of the matrix A. N >= M. */ + +/* A (input/output) COMPLEX array, dimension (LDA,N) */ +/* On entry, the leading M-by-N upper trapezoidal part of the */ +/* array A must contain the matrix to be factorized. */ +/* On exit, the leading M-by-M upper triangular part of A */ +/* contains the upper triangular matrix R, and elements M+1 to */ +/* N of the first M rows of A, with the array TAU, represent the */ +/* unitary matrix Z as a product of M elementary reflectors. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,M). */ + +/* TAU (output) COMPLEX array, dimension (M) */ +/* The scalar factors of the elementary reflectors. */ + +/* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The dimension of the array WORK. LWORK >= max(1,M). */ +/* For optimum performance LWORK >= M*NB, where NB is */ +/* the optimal blocksize. */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the optimal size of the WORK array, returns */ +/* this value as the first entry of the WORK array, and no error */ +/* message related to LWORK is issued by XERBLA. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */ + +/* The factorization is obtained by Householder's method. The kth */ +/* transformation matrix, Z( k ), which is used to introduce zeros into */ +/* the ( m - k + 1 )th row of A, is given in the form */ + +/* Z( k ) = ( I 0 ), */ +/* ( 0 T( k ) ) */ + +/* where */ + +/* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), */ +/* ( 0 ) */ +/* ( z( k ) ) */ + +/* tau is a scalar and z( k ) is an ( n - m ) element vector. */ +/* tau and z( k ) are chosen to annihilate the elements of the kth row */ +/* of X. */ + +/* The scalar tau is returned in the kth element of TAU and the vector */ +/* u( k ) in the kth row of A, such that the elements of z( k ) are */ +/* in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in */ +/* the upper triangular part of A. */ + +/* Z is given by */ + +/* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input arguments */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --tau; + --work; + + /* Function Body */ + *info = 0; + lquery = *lwork == -1; + if (*m < 0) { + *info = -1; + } else if (*n < *m) { + *info = -2; + } else if (*lda < max(1,*m)) { + *info = -4; + } else if (*lwork < max(1,*m) && ! lquery) { + *info = -7; + } + + if (*info == 0) { + if (*m == 0 || *m == *n) { + lwkopt = 1; + } else { + +/* Determine the block size. */ + + nb = ilaenv_(&c__1, "CGERQF", " ", m, n, &c_n1, &c_n1); + lwkopt = *m * nb; + } + work[1].r = (real) lwkopt, work[1].i = 0.f; + + if (*lwork < max(1,*m) && ! lquery) { + *info = -7; + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("CTZRZF", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*m == 0) { + return 0; + } else if (*m == *n) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + tau[i__2].r = 0.f, tau[i__2].i = 0.f; +/* L10: */ + } + return 0; + } + + nbmin = 2; + nx = 1; + iws = *m; + if (nb > 1 && nb < *m) { + +/* Determine when to cross over from blocked to unblocked code. */ + +/* Computing MAX */ + i__1 = 0, i__2 = ilaenv_(&c__3, "CGERQF", " ", m, n, &c_n1, &c_n1); + nx = max(i__1,i__2); + if (nx < *m) { + +/* Determine if workspace is large enough for blocked code. */ + + ldwork = *m; + iws = ldwork * nb; + if (*lwork < iws) { + +/* Not enough workspace to use optimal NB: reduce NB and */ +/* determine the minimum value of NB. */ + + nb = *lwork / ldwork; +/* Computing MAX */ + i__1 = 2, i__2 = ilaenv_(&c__2, "CGERQF", " ", m, n, &c_n1, & + c_n1); + nbmin = max(i__1,i__2); + } + } + } + + if (nb >= nbmin && nb < *m && nx < *m) { + +/* Use blocked code initially. */ +/* The last kk rows are handled by the block method. */ + +/* Computing MIN */ + i__1 = *m + 1; + m1 = min(i__1,*n); + ki = (*m - nx - 1) / nb * nb; +/* Computing MIN */ + i__1 = *m, i__2 = ki + nb; + kk = min(i__1,i__2); + + i__1 = *m - kk + 1; + i__2 = -nb; + for (i__ = *m - kk + ki + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; + i__ += i__2) { +/* Computing MIN */ + i__3 = *m - i__ + 1; + ib = min(i__3,nb); + +/* Compute the TZ factorization of the current block */ +/* A(i:i+ib-1,i:n) */ + + i__3 = *n - i__ + 1; + i__4 = *n - *m; + clatrz_(&ib, &i__3, &i__4, &a[i__ + i__ * a_dim1], lda, &tau[i__], + &work[1]); + if (i__ > 1) { + +/* Form the triangular factor of the block reflector */ +/* H = H(i+ib-1) . . . H(i+1) H(i) */ + + i__3 = *n - *m; + clarzt_("Backward", "Rowwise", &i__3, &ib, &a[i__ + m1 * + a_dim1], lda, &tau[i__], &work[1], &ldwork); + +/* Apply H to A(1:i-1,i:n) from the right */ + + i__3 = i__ - 1; + i__4 = *n - i__ + 1; + i__5 = *n - *m; + clarzb_("Right", "No transpose", "Backward", "Rowwise", &i__3, + &i__4, &ib, &i__5, &a[i__ + m1 * a_dim1], lda, &work[ + 1], &ldwork, &a[i__ * a_dim1 + 1], lda, &work[ib + 1], + &ldwork) + ; + } +/* L20: */ + } + mu = i__ + nb - 1; + } else { + mu = *m; + } + +/* Use unblocked code to factor the last or only block */ + + if (mu > 0) { + i__2 = *n - *m; + clatrz_(&mu, n, &i__2, &a[a_offset], lda, &tau[1], &work[1]); + } + + work[1].r = (real) lwkopt, work[1].i = 0.f; + + return 0; + +/* End of CTZRZF */ + +} /* ctzrzf_ */ |