aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/ctrsna.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ctrsna.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ctrsna.c')
-rw-r--r--contrib/libs/clapack/ctrsna.c445
1 files changed, 445 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ctrsna.c b/contrib/libs/clapack/ctrsna.c
new file mode 100644
index 0000000000..0ca945733c
--- /dev/null
+++ b/contrib/libs/clapack/ctrsna.c
@@ -0,0 +1,445 @@
+/* ctrsna.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+
+/* Subroutine */ int ctrsna_(char *job, char *howmny, logical *select,
+ integer *n, complex *t, integer *ldt, complex *vl, integer *ldvl,
+ complex *vr, integer *ldvr, real *s, real *sep, integer *mm, integer *
+ m, complex *work, integer *ldwork, real *rwork, integer *info)
+{
+ /* System generated locals */
+ integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset,
+ work_dim1, work_offset, i__1, i__2, i__3, i__4, i__5;
+ real r__1, r__2;
+ complex q__1;
+
+ /* Builtin functions */
+ double c_abs(complex *), r_imag(complex *);
+
+ /* Local variables */
+ integer i__, j, k, ks, ix;
+ real eps, est;
+ integer kase, ierr;
+ complex prod;
+ real lnrm, rnrm, scale;
+ extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
+ *, complex *, integer *);
+ extern logical lsame_(char *, char *);
+ integer isave[3];
+ complex dummy[1];
+ logical wants;
+ extern /* Subroutine */ int clacn2_(integer *, complex *, complex *, real
+ *, integer *, integer *);
+ real xnorm;
+ extern doublereal scnrm2_(integer *, complex *, integer *);
+ extern /* Subroutine */ int slabad_(real *, real *);
+ extern integer icamax_(integer *, complex *, integer *);
+ extern doublereal slamch_(char *);
+ extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex
+ *, integer *, complex *, integer *), xerbla_(char *,
+ integer *);
+ real bignum;
+ logical wantbh;
+ extern /* Subroutine */ int clatrs_(char *, char *, char *, char *,
+ integer *, complex *, integer *, complex *, real *, real *,
+ integer *), csrscl_(integer *,
+ real *, complex *, integer *), ctrexc_(char *, integer *, complex
+ *, integer *, complex *, integer *, integer *, integer *, integer
+ *);
+ logical somcon;
+ char normin[1];
+ real smlnum;
+ logical wantsp;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH. */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CTRSNA estimates reciprocal condition numbers for specified */
+/* eigenvalues and/or right eigenvectors of a complex upper triangular */
+/* matrix T (or of any matrix Q*T*Q**H with Q unitary). */
+
+/* Arguments */
+/* ========= */
+
+/* JOB (input) CHARACTER*1 */
+/* Specifies whether condition numbers are required for */
+/* eigenvalues (S) or eigenvectors (SEP): */
+/* = 'E': for eigenvalues only (S); */
+/* = 'V': for eigenvectors only (SEP); */
+/* = 'B': for both eigenvalues and eigenvectors (S and SEP). */
+
+/* HOWMNY (input) CHARACTER*1 */
+/* = 'A': compute condition numbers for all eigenpairs; */
+/* = 'S': compute condition numbers for selected eigenpairs */
+/* specified by the array SELECT. */
+
+/* SELECT (input) LOGICAL array, dimension (N) */
+/* If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
+/* condition numbers are required. To select condition numbers */
+/* for the j-th eigenpair, SELECT(j) must be set to .TRUE.. */
+/* If HOWMNY = 'A', SELECT is not referenced. */
+
+/* N (input) INTEGER */
+/* The order of the matrix T. N >= 0. */
+
+/* T (input) COMPLEX array, dimension (LDT,N) */
+/* The upper triangular matrix T. */
+
+/* LDT (input) INTEGER */
+/* The leading dimension of the array T. LDT >= max(1,N). */
+
+/* VL (input) COMPLEX array, dimension (LDVL,M) */
+/* If JOB = 'E' or 'B', VL must contain left eigenvectors of T */
+/* (or of any Q*T*Q**H with Q unitary), corresponding to the */
+/* eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
+/* must be stored in consecutive columns of VL, as returned by */
+/* CHSEIN or CTREVC. */
+/* If JOB = 'V', VL is not referenced. */
+
+/* LDVL (input) INTEGER */
+/* The leading dimension of the array VL. */
+/* LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N. */
+
+/* VR (input) COMPLEX array, dimension (LDVR,M) */
+/* If JOB = 'E' or 'B', VR must contain right eigenvectors of T */
+/* (or of any Q*T*Q**H with Q unitary), corresponding to the */
+/* eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
+/* must be stored in consecutive columns of VR, as returned by */
+/* CHSEIN or CTREVC. */
+/* If JOB = 'V', VR is not referenced. */
+
+/* LDVR (input) INTEGER */
+/* The leading dimension of the array VR. */
+/* LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N. */
+
+/* S (output) REAL array, dimension (MM) */
+/* If JOB = 'E' or 'B', the reciprocal condition numbers of the */
+/* selected eigenvalues, stored in consecutive elements of the */
+/* array. Thus S(j), SEP(j), and the j-th columns of VL and VR */
+/* all correspond to the same eigenpair (but not in general the */
+/* j-th eigenpair, unless all eigenpairs are selected). */
+/* If JOB = 'V', S is not referenced. */
+
+/* SEP (output) REAL array, dimension (MM) */
+/* If JOB = 'V' or 'B', the estimated reciprocal condition */
+/* numbers of the selected eigenvectors, stored in consecutive */
+/* elements of the array. */
+/* If JOB = 'E', SEP is not referenced. */
+
+/* MM (input) INTEGER */
+/* The number of elements in the arrays S (if JOB = 'E' or 'B') */
+/* and/or SEP (if JOB = 'V' or 'B'). MM >= M. */
+
+/* M (output) INTEGER */
+/* The number of elements of the arrays S and/or SEP actually */
+/* used to store the estimated condition numbers. */
+/* If HOWMNY = 'A', M is set to N. */
+
+/* WORK (workspace) COMPLEX array, dimension (LDWORK,N+6) */
+/* If JOB = 'E', WORK is not referenced. */
+
+/* LDWORK (input) INTEGER */
+/* The leading dimension of the array WORK. */
+/* LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N. */
+
+/* RWORK (workspace) REAL array, dimension (N) */
+/* If JOB = 'E', RWORK is not referenced. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+
+/* Further Details */
+/* =============== */
+
+/* The reciprocal of the condition number of an eigenvalue lambda is */
+/* defined as */
+
+/* S(lambda) = |v'*u| / (norm(u)*norm(v)) */
+
+/* where u and v are the right and left eigenvectors of T corresponding */
+/* to lambda; v' denotes the conjugate transpose of v, and norm(u) */
+/* denotes the Euclidean norm. These reciprocal condition numbers always */
+/* lie between zero (very badly conditioned) and one (very well */
+/* conditioned). If n = 1, S(lambda) is defined to be 1. */
+
+/* An approximate error bound for a computed eigenvalue W(i) is given by */
+
+/* EPS * norm(T) / S(i) */
+
+/* where EPS is the machine precision. */
+
+/* The reciprocal of the condition number of the right eigenvector u */
+/* corresponding to lambda is defined as follows. Suppose */
+
+/* T = ( lambda c ) */
+/* ( 0 T22 ) */
+
+/* Then the reciprocal condition number is */
+
+/* SEP( lambda, T22 ) = sigma-min( T22 - lambda*I ) */
+
+/* where sigma-min denotes the smallest singular value. We approximate */
+/* the smallest singular value by the reciprocal of an estimate of the */
+/* one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is */
+/* defined to be abs(T(1,1)). */
+
+/* An approximate error bound for a computed right eigenvector VR(i) */
+/* is given by */
+
+/* EPS * norm(T) / SEP(i) */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Statement Functions .. */
+/* .. */
+/* .. Statement Function definitions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Decode and test the input parameters */
+
+ /* Parameter adjustments */
+ --select;
+ t_dim1 = *ldt;
+ t_offset = 1 + t_dim1;
+ t -= t_offset;
+ vl_dim1 = *ldvl;
+ vl_offset = 1 + vl_dim1;
+ vl -= vl_offset;
+ vr_dim1 = *ldvr;
+ vr_offset = 1 + vr_dim1;
+ vr -= vr_offset;
+ --s;
+ --sep;
+ work_dim1 = *ldwork;
+ work_offset = 1 + work_dim1;
+ work -= work_offset;
+ --rwork;
+
+ /* Function Body */
+ wantbh = lsame_(job, "B");
+ wants = lsame_(job, "E") || wantbh;
+ wantsp = lsame_(job, "V") || wantbh;
+
+ somcon = lsame_(howmny, "S");
+
+/* Set M to the number of eigenpairs for which condition numbers are */
+/* to be computed. */
+
+ if (somcon) {
+ *m = 0;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (select[j]) {
+ ++(*m);
+ }
+/* L10: */
+ }
+ } else {
+ *m = *n;
+ }
+
+ *info = 0;
+ if (! wants && ! wantsp) {
+ *info = -1;
+ } else if (! lsame_(howmny, "A") && ! somcon) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*ldt < max(1,*n)) {
+ *info = -6;
+ } else if (*ldvl < 1 || wants && *ldvl < *n) {
+ *info = -8;
+ } else if (*ldvr < 1 || wants && *ldvr < *n) {
+ *info = -10;
+ } else if (*mm < *m) {
+ *info = -13;
+ } else if (*ldwork < 1 || wantsp && *ldwork < *n) {
+ *info = -16;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CTRSNA", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ if (*n == 1) {
+ if (somcon) {
+ if (! select[1]) {
+ return 0;
+ }
+ }
+ if (wants) {
+ s[1] = 1.f;
+ }
+ if (wantsp) {
+ sep[1] = c_abs(&t[t_dim1 + 1]);
+ }
+ return 0;
+ }
+
+/* Get machine constants */
+
+ eps = slamch_("P");
+ smlnum = slamch_("S") / eps;
+ bignum = 1.f / smlnum;
+ slabad_(&smlnum, &bignum);
+
+ ks = 1;
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+
+ if (somcon) {
+ if (! select[k]) {
+ goto L50;
+ }
+ }
+
+ if (wants) {
+
+/* Compute the reciprocal condition number of the k-th */
+/* eigenvalue. */
+
+ cdotc_(&q__1, n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks * vl_dim1 +
+ 1], &c__1);
+ prod.r = q__1.r, prod.i = q__1.i;
+ rnrm = scnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
+ lnrm = scnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
+ s[ks] = c_abs(&prod) / (rnrm * lnrm);
+
+ }
+
+ if (wantsp) {
+
+/* Estimate the reciprocal condition number of the k-th */
+/* eigenvector. */
+
+/* Copy the matrix T to the array WORK and swap the k-th */
+/* diagonal element to the (1,1) position. */
+
+ clacpy_("Full", n, n, &t[t_offset], ldt, &work[work_offset],
+ ldwork);
+ ctrexc_("No Q", n, &work[work_offset], ldwork, dummy, &c__1, &k, &
+ c__1, &ierr);
+
+/* Form C = T22 - lambda*I in WORK(2:N,2:N). */
+
+ i__2 = *n;
+ for (i__ = 2; i__ <= i__2; ++i__) {
+ i__3 = i__ + i__ * work_dim1;
+ i__4 = i__ + i__ * work_dim1;
+ i__5 = work_dim1 + 1;
+ q__1.r = work[i__4].r - work[i__5].r, q__1.i = work[i__4].i -
+ work[i__5].i;
+ work[i__3].r = q__1.r, work[i__3].i = q__1.i;
+/* L20: */
+ }
+
+/* Estimate a lower bound for the 1-norm of inv(C'). The 1st */
+/* and (N+1)th columns of WORK are used to store work vectors. */
+
+ sep[ks] = 0.f;
+ est = 0.f;
+ kase = 0;
+ *(unsigned char *)normin = 'N';
+L30:
+ i__2 = *n - 1;
+ clacn2_(&i__2, &work[(*n + 1) * work_dim1 + 1], &work[work_offset]
+, &est, &kase, isave);
+
+ if (kase != 0) {
+ if (kase == 1) {
+
+/* Solve C'*x = scale*b */
+
+ i__2 = *n - 1;
+ clatrs_("Upper", "Conjugate transpose", "Nonunit", normin,
+ &i__2, &work[(work_dim1 << 1) + 2], ldwork, &
+ work[work_offset], &scale, &rwork[1], &ierr);
+ } else {
+
+/* Solve C*x = scale*b */
+
+ i__2 = *n - 1;
+ clatrs_("Upper", "No transpose", "Nonunit", normin, &i__2,
+ &work[(work_dim1 << 1) + 2], ldwork, &work[
+ work_offset], &scale, &rwork[1], &ierr);
+ }
+ *(unsigned char *)normin = 'Y';
+ if (scale != 1.f) {
+
+/* Multiply by 1/SCALE if doing so will not cause */
+/* overflow. */
+
+ i__2 = *n - 1;
+ ix = icamax_(&i__2, &work[work_offset], &c__1);
+ i__2 = ix + work_dim1;
+ xnorm = (r__1 = work[i__2].r, dabs(r__1)) + (r__2 =
+ r_imag(&work[ix + work_dim1]), dabs(r__2));
+ if (scale < xnorm * smlnum || scale == 0.f) {
+ goto L40;
+ }
+ csrscl_(n, &scale, &work[work_offset], &c__1);
+ }
+ goto L30;
+ }
+
+ sep[ks] = 1.f / dmax(est,smlnum);
+ }
+
+L40:
+ ++ks;
+L50:
+ ;
+ }
+ return 0;
+
+/* End of CTRSNA */
+
+} /* ctrsna_ */