aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/ctgsy2.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ctgsy2.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ctgsy2.c')
-rw-r--r--contrib/libs/clapack/ctgsy2.c477
1 files changed, 477 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ctgsy2.c b/contrib/libs/clapack/ctgsy2.c
new file mode 100644
index 0000000000..055e2ed036
--- /dev/null
+++ b/contrib/libs/clapack/ctgsy2.c
@@ -0,0 +1,477 @@
+/* ctgsy2.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__2 = 2;
+static integer c__1 = 1;
+
+/* Subroutine */ int ctgsy2_(char *trans, integer *ijob, integer *m, integer *
+ n, complex *a, integer *lda, complex *b, integer *ldb, complex *c__,
+ integer *ldc, complex *d__, integer *ldd, complex *e, integer *lde,
+ complex *f, integer *ldf, real *scale, real *rdsum, real *rdscal,
+ integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1,
+ d_offset, e_dim1, e_offset, f_dim1, f_offset, i__1, i__2, i__3,
+ i__4;
+ complex q__1, q__2, q__3, q__4, q__5, q__6;
+
+ /* Builtin functions */
+ void r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ integer i__, j, k;
+ complex z__[4] /* was [2][2] */, rhs[2];
+ integer ierr, ipiv[2], jpiv[2];
+ complex alpha;
+ extern /* Subroutine */ int cscal_(integer *, complex *, complex *,
+ integer *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int caxpy_(integer *, complex *, complex *,
+ integer *, complex *, integer *), cgesc2_(integer *, complex *,
+ integer *, complex *, integer *, integer *, real *), cgetc2_(
+ integer *, complex *, integer *, integer *, integer *, integer *),
+ clatdf_(integer *, integer *, complex *, integer *, complex *,
+ real *, real *, integer *, integer *);
+ real scaloc;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ logical notran;
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CTGSY2 solves the generalized Sylvester equation */
+
+/* A * R - L * B = scale * C (1) */
+/* D * R - L * E = scale * F */
+
+/* using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices, */
+/* (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M, */
+/* N-by-N and M-by-N, respectively. A, B, D and E are upper triangular */
+/* (i.e., (A,D) and (B,E) in generalized Schur form). */
+
+/* The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output */
+/* scaling factor chosen to avoid overflow. */
+
+/* In matrix notation solving equation (1) corresponds to solve */
+/* Zx = scale * b, where Z is defined as */
+
+/* Z = [ kron(In, A) -kron(B', Im) ] (2) */
+/* [ kron(In, D) -kron(E', Im) ], */
+
+/* Ik is the identity matrix of size k and X' is the transpose of X. */
+/* kron(X, Y) is the Kronecker product between the matrices X and Y. */
+
+/* If TRANS = 'C', y in the conjugate transposed system Z'y = scale*b */
+/* is solved for, which is equivalent to solve for R and L in */
+
+/* A' * R + D' * L = scale * C (3) */
+/* R * B' + L * E' = scale * -F */
+
+/* This case is used to compute an estimate of Dif[(A, D), (B, E)] = */
+/* = sigma_min(Z) using reverse communicaton with CLACON. */
+
+/* CTGSY2 also (IJOB >= 1) contributes to the computation in CTGSYL */
+/* of an upper bound on the separation between to matrix pairs. Then */
+/* the input (A, D), (B, E) are sub-pencils of two matrix pairs in */
+/* CTGSYL. */
+
+/* Arguments */
+/* ========= */
+
+/* TRANS (input) CHARACTER*1 */
+/* = 'N', solve the generalized Sylvester equation (1). */
+/* = 'T': solve the 'transposed' system (3). */
+
+/* IJOB (input) INTEGER */
+/* Specifies what kind of functionality to be performed. */
+/* =0: solve (1) only. */
+/* =1: A contribution from this subsystem to a Frobenius */
+/* norm-based estimate of the separation between two matrix */
+/* pairs is computed. (look ahead strategy is used). */
+/* =2: A contribution from this subsystem to a Frobenius */
+/* norm-based estimate of the separation between two matrix */
+/* pairs is computed. (SGECON on sub-systems is used.) */
+/* Not referenced if TRANS = 'T'. */
+
+/* M (input) INTEGER */
+/* On entry, M specifies the order of A and D, and the row */
+/* dimension of C, F, R and L. */
+
+/* N (input) INTEGER */
+/* On entry, N specifies the order of B and E, and the column */
+/* dimension of C, F, R and L. */
+
+/* A (input) COMPLEX array, dimension (LDA, M) */
+/* On entry, A contains an upper triangular matrix. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the matrix A. LDA >= max(1, M). */
+
+/* B (input) COMPLEX array, dimension (LDB, N) */
+/* On entry, B contains an upper triangular matrix. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the matrix B. LDB >= max(1, N). */
+
+/* C (input/output) COMPLEX array, dimension (LDC, N) */
+/* On entry, C contains the right-hand-side of the first matrix */
+/* equation in (1). */
+/* On exit, if IJOB = 0, C has been overwritten by the solution */
+/* R. */
+
+/* LDC (input) INTEGER */
+/* The leading dimension of the matrix C. LDC >= max(1, M). */
+
+/* D (input) COMPLEX array, dimension (LDD, M) */
+/* On entry, D contains an upper triangular matrix. */
+
+/* LDD (input) INTEGER */
+/* The leading dimension of the matrix D. LDD >= max(1, M). */
+
+/* E (input) COMPLEX array, dimension (LDE, N) */
+/* On entry, E contains an upper triangular matrix. */
+
+/* LDE (input) INTEGER */
+/* The leading dimension of the matrix E. LDE >= max(1, N). */
+
+/* F (input/output) COMPLEX array, dimension (LDF, N) */
+/* On entry, F contains the right-hand-side of the second matrix */
+/* equation in (1). */
+/* On exit, if IJOB = 0, F has been overwritten by the solution */
+/* L. */
+
+/* LDF (input) INTEGER */
+/* The leading dimension of the matrix F. LDF >= max(1, M). */
+
+/* SCALE (output) REAL */
+/* On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions */
+/* R and L (C and F on entry) will hold the solutions to a */
+/* slightly perturbed system but the input matrices A, B, D and */
+/* E have not been changed. If SCALE = 0, R and L will hold the */
+/* solutions to the homogeneous system with C = F = 0. */
+/* Normally, SCALE = 1. */
+
+/* RDSUM (input/output) REAL */
+/* On entry, the sum of squares of computed contributions to */
+/* the Dif-estimate under computation by CTGSYL, where the */
+/* scaling factor RDSCAL (see below) has been factored out. */
+/* On exit, the corresponding sum of squares updated with the */
+/* contributions from the current sub-system. */
+/* If TRANS = 'T' RDSUM is not touched. */
+/* NOTE: RDSUM only makes sense when CTGSY2 is called by */
+/* CTGSYL. */
+
+/* RDSCAL (input/output) REAL */
+/* On entry, scaling factor used to prevent overflow in RDSUM. */
+/* On exit, RDSCAL is updated w.r.t. the current contributions */
+/* in RDSUM. */
+/* If TRANS = 'T', RDSCAL is not touched. */
+/* NOTE: RDSCAL only makes sense when CTGSY2 is called by */
+/* CTGSYL. */
+
+/* INFO (output) INTEGER */
+/* On exit, if INFO is set to */
+/* =0: Successful exit */
+/* <0: If INFO = -i, input argument number i is illegal. */
+/* >0: The matrix pairs (A, D) and (B, E) have common or very */
+/* close eigenvalues. */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
+/* Umea University, S-901 87 Umea, Sweden. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Decode and test input parameters */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+ d_dim1 = *ldd;
+ d_offset = 1 + d_dim1;
+ d__ -= d_offset;
+ e_dim1 = *lde;
+ e_offset = 1 + e_dim1;
+ e -= e_offset;
+ f_dim1 = *ldf;
+ f_offset = 1 + f_dim1;
+ f -= f_offset;
+
+ /* Function Body */
+ *info = 0;
+ ierr = 0;
+ notran = lsame_(trans, "N");
+ if (! notran && ! lsame_(trans, "C")) {
+ *info = -1;
+ } else if (notran) {
+ if (*ijob < 0 || *ijob > 2) {
+ *info = -2;
+ }
+ }
+ if (*info == 0) {
+ if (*m <= 0) {
+ *info = -3;
+ } else if (*n <= 0) {
+ *info = -4;
+ } else if (*lda < max(1,*m)) {
+ *info = -5;
+ } else if (*ldb < max(1,*n)) {
+ *info = -8;
+ } else if (*ldc < max(1,*m)) {
+ *info = -10;
+ } else if (*ldd < max(1,*m)) {
+ *info = -12;
+ } else if (*lde < max(1,*n)) {
+ *info = -14;
+ } else if (*ldf < max(1,*m)) {
+ *info = -16;
+ }
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CTGSY2", &i__1);
+ return 0;
+ }
+
+ if (notran) {
+
+/* Solve (I, J) - system */
+/* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) */
+/* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) */
+/* for I = M, M - 1, ..., 1; J = 1, 2, ..., N */
+
+ *scale = 1.f;
+ scaloc = 1.f;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ for (i__ = *m; i__ >= 1; --i__) {
+
+/* Build 2 by 2 system */
+
+ i__2 = i__ + i__ * a_dim1;
+ z__[0].r = a[i__2].r, z__[0].i = a[i__2].i;
+ i__2 = i__ + i__ * d_dim1;
+ z__[1].r = d__[i__2].r, z__[1].i = d__[i__2].i;
+ i__2 = j + j * b_dim1;
+ q__1.r = -b[i__2].r, q__1.i = -b[i__2].i;
+ z__[2].r = q__1.r, z__[2].i = q__1.i;
+ i__2 = j + j * e_dim1;
+ q__1.r = -e[i__2].r, q__1.i = -e[i__2].i;
+ z__[3].r = q__1.r, z__[3].i = q__1.i;
+
+/* Set up right hand side(s) */
+
+ i__2 = i__ + j * c_dim1;
+ rhs[0].r = c__[i__2].r, rhs[0].i = c__[i__2].i;
+ i__2 = i__ + j * f_dim1;
+ rhs[1].r = f[i__2].r, rhs[1].i = f[i__2].i;
+
+/* Solve Z * x = RHS */
+
+ cgetc2_(&c__2, z__, &c__2, ipiv, jpiv, &ierr);
+ if (ierr > 0) {
+ *info = ierr;
+ }
+ if (*ijob == 0) {
+ cgesc2_(&c__2, z__, &c__2, rhs, ipiv, jpiv, &scaloc);
+ if (scaloc != 1.f) {
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+ q__1.r = scaloc, q__1.i = 0.f;
+ cscal_(m, &q__1, &c__[k * c_dim1 + 1], &c__1);
+ q__1.r = scaloc, q__1.i = 0.f;
+ cscal_(m, &q__1, &f[k * f_dim1 + 1], &c__1);
+/* L10: */
+ }
+ *scale *= scaloc;
+ }
+ } else {
+ clatdf_(ijob, &c__2, z__, &c__2, rhs, rdsum, rdscal, ipiv,
+ jpiv);
+ }
+
+/* Unpack solution vector(s) */
+
+ i__2 = i__ + j * c_dim1;
+ c__[i__2].r = rhs[0].r, c__[i__2].i = rhs[0].i;
+ i__2 = i__ + j * f_dim1;
+ f[i__2].r = rhs[1].r, f[i__2].i = rhs[1].i;
+
+/* Substitute R(I, J) and L(I, J) into remaining equation. */
+
+ if (i__ > 1) {
+ q__1.r = -rhs[0].r, q__1.i = -rhs[0].i;
+ alpha.r = q__1.r, alpha.i = q__1.i;
+ i__2 = i__ - 1;
+ caxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &c__[j
+ * c_dim1 + 1], &c__1);
+ i__2 = i__ - 1;
+ caxpy_(&i__2, &alpha, &d__[i__ * d_dim1 + 1], &c__1, &f[j
+ * f_dim1 + 1], &c__1);
+ }
+ if (j < *n) {
+ i__2 = *n - j;
+ caxpy_(&i__2, &rhs[1], &b[j + (j + 1) * b_dim1], ldb, &
+ c__[i__ + (j + 1) * c_dim1], ldc);
+ i__2 = *n - j;
+ caxpy_(&i__2, &rhs[1], &e[j + (j + 1) * e_dim1], lde, &f[
+ i__ + (j + 1) * f_dim1], ldf);
+ }
+
+/* L20: */
+ }
+/* L30: */
+ }
+ } else {
+
+/* Solve transposed (I, J) - system: */
+/* A(I, I)' * R(I, J) + D(I, I)' * L(J, J) = C(I, J) */
+/* R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J) */
+/* for I = 1, 2, ..., M, J = N, N - 1, ..., 1 */
+
+ *scale = 1.f;
+ scaloc = 1.f;
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ for (j = *n; j >= 1; --j) {
+
+/* Build 2 by 2 system Z' */
+
+ r_cnjg(&q__1, &a[i__ + i__ * a_dim1]);
+ z__[0].r = q__1.r, z__[0].i = q__1.i;
+ r_cnjg(&q__2, &b[j + j * b_dim1]);
+ q__1.r = -q__2.r, q__1.i = -q__2.i;
+ z__[1].r = q__1.r, z__[1].i = q__1.i;
+ r_cnjg(&q__1, &d__[i__ + i__ * d_dim1]);
+ z__[2].r = q__1.r, z__[2].i = q__1.i;
+ r_cnjg(&q__2, &e[j + j * e_dim1]);
+ q__1.r = -q__2.r, q__1.i = -q__2.i;
+ z__[3].r = q__1.r, z__[3].i = q__1.i;
+
+
+/* Set up right hand side(s) */
+
+ i__2 = i__ + j * c_dim1;
+ rhs[0].r = c__[i__2].r, rhs[0].i = c__[i__2].i;
+ i__2 = i__ + j * f_dim1;
+ rhs[1].r = f[i__2].r, rhs[1].i = f[i__2].i;
+
+/* Solve Z' * x = RHS */
+
+ cgetc2_(&c__2, z__, &c__2, ipiv, jpiv, &ierr);
+ if (ierr > 0) {
+ *info = ierr;
+ }
+ cgesc2_(&c__2, z__, &c__2, rhs, ipiv, jpiv, &scaloc);
+ if (scaloc != 1.f) {
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+ q__1.r = scaloc, q__1.i = 0.f;
+ cscal_(m, &q__1, &c__[k * c_dim1 + 1], &c__1);
+ q__1.r = scaloc, q__1.i = 0.f;
+ cscal_(m, &q__1, &f[k * f_dim1 + 1], &c__1);
+/* L40: */
+ }
+ *scale *= scaloc;
+ }
+
+/* Unpack solution vector(s) */
+
+ i__2 = i__ + j * c_dim1;
+ c__[i__2].r = rhs[0].r, c__[i__2].i = rhs[0].i;
+ i__2 = i__ + j * f_dim1;
+ f[i__2].r = rhs[1].r, f[i__2].i = rhs[1].i;
+
+/* Substitute R(I, J) and L(I, J) into remaining equation. */
+
+ i__2 = j - 1;
+ for (k = 1; k <= i__2; ++k) {
+ i__3 = i__ + k * f_dim1;
+ i__4 = i__ + k * f_dim1;
+ r_cnjg(&q__4, &b[k + j * b_dim1]);
+ q__3.r = rhs[0].r * q__4.r - rhs[0].i * q__4.i, q__3.i =
+ rhs[0].r * q__4.i + rhs[0].i * q__4.r;
+ q__2.r = f[i__4].r + q__3.r, q__2.i = f[i__4].i + q__3.i;
+ r_cnjg(&q__6, &e[k + j * e_dim1]);
+ q__5.r = rhs[1].r * q__6.r - rhs[1].i * q__6.i, q__5.i =
+ rhs[1].r * q__6.i + rhs[1].i * q__6.r;
+ q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i;
+ f[i__3].r = q__1.r, f[i__3].i = q__1.i;
+/* L50: */
+ }
+ i__2 = *m;
+ for (k = i__ + 1; k <= i__2; ++k) {
+ i__3 = k + j * c_dim1;
+ i__4 = k + j * c_dim1;
+ r_cnjg(&q__4, &a[i__ + k * a_dim1]);
+ q__3.r = q__4.r * rhs[0].r - q__4.i * rhs[0].i, q__3.i =
+ q__4.r * rhs[0].i + q__4.i * rhs[0].r;
+ q__2.r = c__[i__4].r - q__3.r, q__2.i = c__[i__4].i -
+ q__3.i;
+ r_cnjg(&q__6, &d__[i__ + k * d_dim1]);
+ q__5.r = q__6.r * rhs[1].r - q__6.i * rhs[1].i, q__5.i =
+ q__6.r * rhs[1].i + q__6.i * rhs[1].r;
+ q__1.r = q__2.r - q__5.r, q__1.i = q__2.i - q__5.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L60: */
+ }
+
+/* L70: */
+ }
+/* L80: */
+ }
+ }
+ return 0;
+
+/* End of CTGSY2 */
+
+} /* ctgsy2_ */