diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ctgsy2.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ctgsy2.c')
-rw-r--r-- | contrib/libs/clapack/ctgsy2.c | 477 |
1 files changed, 477 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ctgsy2.c b/contrib/libs/clapack/ctgsy2.c new file mode 100644 index 0000000000..055e2ed036 --- /dev/null +++ b/contrib/libs/clapack/ctgsy2.c @@ -0,0 +1,477 @@ +/* ctgsy2.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__2 = 2; +static integer c__1 = 1; + +/* Subroutine */ int ctgsy2_(char *trans, integer *ijob, integer *m, integer * + n, complex *a, integer *lda, complex *b, integer *ldb, complex *c__, + integer *ldc, complex *d__, integer *ldd, complex *e, integer *lde, + complex *f, integer *ldf, real *scale, real *rdsum, real *rdscal, + integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1, + d_offset, e_dim1, e_offset, f_dim1, f_offset, i__1, i__2, i__3, + i__4; + complex q__1, q__2, q__3, q__4, q__5, q__6; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + integer i__, j, k; + complex z__[4] /* was [2][2] */, rhs[2]; + integer ierr, ipiv[2], jpiv[2]; + complex alpha; + extern /* Subroutine */ int cscal_(integer *, complex *, complex *, + integer *); + extern logical lsame_(char *, char *); + extern /* Subroutine */ int caxpy_(integer *, complex *, complex *, + integer *, complex *, integer *), cgesc2_(integer *, complex *, + integer *, complex *, integer *, integer *, real *), cgetc2_( + integer *, complex *, integer *, integer *, integer *, integer *), + clatdf_(integer *, integer *, complex *, integer *, complex *, + real *, real *, integer *, integer *); + real scaloc; + extern /* Subroutine */ int xerbla_(char *, integer *); + logical notran; + + +/* -- LAPACK auxiliary routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CTGSY2 solves the generalized Sylvester equation */ + +/* A * R - L * B = scale * C (1) */ +/* D * R - L * E = scale * F */ + +/* using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices, */ +/* (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M, */ +/* N-by-N and M-by-N, respectively. A, B, D and E are upper triangular */ +/* (i.e., (A,D) and (B,E) in generalized Schur form). */ + +/* The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output */ +/* scaling factor chosen to avoid overflow. */ + +/* In matrix notation solving equation (1) corresponds to solve */ +/* Zx = scale * b, where Z is defined as */ + +/* Z = [ kron(In, A) -kron(B', Im) ] (2) */ +/* [ kron(In, D) -kron(E', Im) ], */ + +/* Ik is the identity matrix of size k and X' is the transpose of X. */ +/* kron(X, Y) is the Kronecker product between the matrices X and Y. */ + +/* If TRANS = 'C', y in the conjugate transposed system Z'y = scale*b */ +/* is solved for, which is equivalent to solve for R and L in */ + +/* A' * R + D' * L = scale * C (3) */ +/* R * B' + L * E' = scale * -F */ + +/* This case is used to compute an estimate of Dif[(A, D), (B, E)] = */ +/* = sigma_min(Z) using reverse communicaton with CLACON. */ + +/* CTGSY2 also (IJOB >= 1) contributes to the computation in CTGSYL */ +/* of an upper bound on the separation between to matrix pairs. Then */ +/* the input (A, D), (B, E) are sub-pencils of two matrix pairs in */ +/* CTGSYL. */ + +/* Arguments */ +/* ========= */ + +/* TRANS (input) CHARACTER*1 */ +/* = 'N', solve the generalized Sylvester equation (1). */ +/* = 'T': solve the 'transposed' system (3). */ + +/* IJOB (input) INTEGER */ +/* Specifies what kind of functionality to be performed. */ +/* =0: solve (1) only. */ +/* =1: A contribution from this subsystem to a Frobenius */ +/* norm-based estimate of the separation between two matrix */ +/* pairs is computed. (look ahead strategy is used). */ +/* =2: A contribution from this subsystem to a Frobenius */ +/* norm-based estimate of the separation between two matrix */ +/* pairs is computed. (SGECON on sub-systems is used.) */ +/* Not referenced if TRANS = 'T'. */ + +/* M (input) INTEGER */ +/* On entry, M specifies the order of A and D, and the row */ +/* dimension of C, F, R and L. */ + +/* N (input) INTEGER */ +/* On entry, N specifies the order of B and E, and the column */ +/* dimension of C, F, R and L. */ + +/* A (input) COMPLEX array, dimension (LDA, M) */ +/* On entry, A contains an upper triangular matrix. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the matrix A. LDA >= max(1, M). */ + +/* B (input) COMPLEX array, dimension (LDB, N) */ +/* On entry, B contains an upper triangular matrix. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the matrix B. LDB >= max(1, N). */ + +/* C (input/output) COMPLEX array, dimension (LDC, N) */ +/* On entry, C contains the right-hand-side of the first matrix */ +/* equation in (1). */ +/* On exit, if IJOB = 0, C has been overwritten by the solution */ +/* R. */ + +/* LDC (input) INTEGER */ +/* The leading dimension of the matrix C. LDC >= max(1, M). */ + +/* D (input) COMPLEX array, dimension (LDD, M) */ +/* On entry, D contains an upper triangular matrix. */ + +/* LDD (input) INTEGER */ +/* The leading dimension of the matrix D. LDD >= max(1, M). */ + +/* E (input) COMPLEX array, dimension (LDE, N) */ +/* On entry, E contains an upper triangular matrix. */ + +/* LDE (input) INTEGER */ +/* The leading dimension of the matrix E. LDE >= max(1, N). */ + +/* F (input/output) COMPLEX array, dimension (LDF, N) */ +/* On entry, F contains the right-hand-side of the second matrix */ +/* equation in (1). */ +/* On exit, if IJOB = 0, F has been overwritten by the solution */ +/* L. */ + +/* LDF (input) INTEGER */ +/* The leading dimension of the matrix F. LDF >= max(1, M). */ + +/* SCALE (output) REAL */ +/* On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions */ +/* R and L (C and F on entry) will hold the solutions to a */ +/* slightly perturbed system but the input matrices A, B, D and */ +/* E have not been changed. If SCALE = 0, R and L will hold the */ +/* solutions to the homogeneous system with C = F = 0. */ +/* Normally, SCALE = 1. */ + +/* RDSUM (input/output) REAL */ +/* On entry, the sum of squares of computed contributions to */ +/* the Dif-estimate under computation by CTGSYL, where the */ +/* scaling factor RDSCAL (see below) has been factored out. */ +/* On exit, the corresponding sum of squares updated with the */ +/* contributions from the current sub-system. */ +/* If TRANS = 'T' RDSUM is not touched. */ +/* NOTE: RDSUM only makes sense when CTGSY2 is called by */ +/* CTGSYL. */ + +/* RDSCAL (input/output) REAL */ +/* On entry, scaling factor used to prevent overflow in RDSUM. */ +/* On exit, RDSCAL is updated w.r.t. the current contributions */ +/* in RDSUM. */ +/* If TRANS = 'T', RDSCAL is not touched. */ +/* NOTE: RDSCAL only makes sense when CTGSY2 is called by */ +/* CTGSYL. */ + +/* INFO (output) INTEGER */ +/* On exit, if INFO is set to */ +/* =0: Successful exit */ +/* <0: If INFO = -i, input argument number i is illegal. */ +/* >0: The matrix pairs (A, D) and (B, E) have common or very */ +/* close eigenvalues. */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */ +/* Umea University, S-901 87 Umea, Sweden. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Decode and test input parameters */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + d_dim1 = *ldd; + d_offset = 1 + d_dim1; + d__ -= d_offset; + e_dim1 = *lde; + e_offset = 1 + e_dim1; + e -= e_offset; + f_dim1 = *ldf; + f_offset = 1 + f_dim1; + f -= f_offset; + + /* Function Body */ + *info = 0; + ierr = 0; + notran = lsame_(trans, "N"); + if (! notran && ! lsame_(trans, "C")) { + *info = -1; + } else if (notran) { + if (*ijob < 0 || *ijob > 2) { + *info = -2; + } + } + if (*info == 0) { + if (*m <= 0) { + *info = -3; + } else if (*n <= 0) { + *info = -4; + } else if (*lda < max(1,*m)) { + *info = -5; + } else if (*ldb < max(1,*n)) { + *info = -8; + } else if (*ldc < max(1,*m)) { + *info = -10; + } else if (*ldd < max(1,*m)) { + *info = -12; + } else if (*lde < max(1,*n)) { + *info = -14; + } else if (*ldf < max(1,*m)) { + *info = -16; + } + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CTGSY2", &i__1); + return 0; + } + + if (notran) { + +/* Solve (I, J) - system */ +/* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) */ +/* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) */ +/* for I = M, M - 1, ..., 1; J = 1, 2, ..., N */ + + *scale = 1.f; + scaloc = 1.f; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + for (i__ = *m; i__ >= 1; --i__) { + +/* Build 2 by 2 system */ + + i__2 = i__ + i__ * a_dim1; + z__[0].r = a[i__2].r, z__[0].i = a[i__2].i; + i__2 = i__ + i__ * d_dim1; + z__[1].r = d__[i__2].r, z__[1].i = d__[i__2].i; + i__2 = j + j * b_dim1; + q__1.r = -b[i__2].r, q__1.i = -b[i__2].i; + z__[2].r = q__1.r, z__[2].i = q__1.i; + i__2 = j + j * e_dim1; + q__1.r = -e[i__2].r, q__1.i = -e[i__2].i; + z__[3].r = q__1.r, z__[3].i = q__1.i; + +/* Set up right hand side(s) */ + + i__2 = i__ + j * c_dim1; + rhs[0].r = c__[i__2].r, rhs[0].i = c__[i__2].i; + i__2 = i__ + j * f_dim1; + rhs[1].r = f[i__2].r, rhs[1].i = f[i__2].i; + +/* Solve Z * x = RHS */ + + cgetc2_(&c__2, z__, &c__2, ipiv, jpiv, &ierr); + if (ierr > 0) { + *info = ierr; + } + if (*ijob == 0) { + cgesc2_(&c__2, z__, &c__2, rhs, ipiv, jpiv, &scaloc); + if (scaloc != 1.f) { + i__2 = *n; + for (k = 1; k <= i__2; ++k) { + q__1.r = scaloc, q__1.i = 0.f; + cscal_(m, &q__1, &c__[k * c_dim1 + 1], &c__1); + q__1.r = scaloc, q__1.i = 0.f; + cscal_(m, &q__1, &f[k * f_dim1 + 1], &c__1); +/* L10: */ + } + *scale *= scaloc; + } + } else { + clatdf_(ijob, &c__2, z__, &c__2, rhs, rdsum, rdscal, ipiv, + jpiv); + } + +/* Unpack solution vector(s) */ + + i__2 = i__ + j * c_dim1; + c__[i__2].r = rhs[0].r, c__[i__2].i = rhs[0].i; + i__2 = i__ + j * f_dim1; + f[i__2].r = rhs[1].r, f[i__2].i = rhs[1].i; + +/* Substitute R(I, J) and L(I, J) into remaining equation. */ + + if (i__ > 1) { + q__1.r = -rhs[0].r, q__1.i = -rhs[0].i; + alpha.r = q__1.r, alpha.i = q__1.i; + i__2 = i__ - 1; + caxpy_(&i__2, &alpha, &a[i__ * a_dim1 + 1], &c__1, &c__[j + * c_dim1 + 1], &c__1); + i__2 = i__ - 1; + caxpy_(&i__2, &alpha, &d__[i__ * d_dim1 + 1], &c__1, &f[j + * f_dim1 + 1], &c__1); + } + if (j < *n) { + i__2 = *n - j; + caxpy_(&i__2, &rhs[1], &b[j + (j + 1) * b_dim1], ldb, & + c__[i__ + (j + 1) * c_dim1], ldc); + i__2 = *n - j; + caxpy_(&i__2, &rhs[1], &e[j + (j + 1) * e_dim1], lde, &f[ + i__ + (j + 1) * f_dim1], ldf); + } + +/* L20: */ + } +/* L30: */ + } + } else { + +/* Solve transposed (I, J) - system: */ +/* A(I, I)' * R(I, J) + D(I, I)' * L(J, J) = C(I, J) */ +/* R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J) */ +/* for I = 1, 2, ..., M, J = N, N - 1, ..., 1 */ + + *scale = 1.f; + scaloc = 1.f; + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + for (j = *n; j >= 1; --j) { + +/* Build 2 by 2 system Z' */ + + r_cnjg(&q__1, &a[i__ + i__ * a_dim1]); + z__[0].r = q__1.r, z__[0].i = q__1.i; + r_cnjg(&q__2, &b[j + j * b_dim1]); + q__1.r = -q__2.r, q__1.i = -q__2.i; + z__[1].r = q__1.r, z__[1].i = q__1.i; + r_cnjg(&q__1, &d__[i__ + i__ * d_dim1]); + z__[2].r = q__1.r, z__[2].i = q__1.i; + r_cnjg(&q__2, &e[j + j * e_dim1]); + q__1.r = -q__2.r, q__1.i = -q__2.i; + z__[3].r = q__1.r, z__[3].i = q__1.i; + + +/* Set up right hand side(s) */ + + i__2 = i__ + j * c_dim1; + rhs[0].r = c__[i__2].r, rhs[0].i = c__[i__2].i; + i__2 = i__ + j * f_dim1; + rhs[1].r = f[i__2].r, rhs[1].i = f[i__2].i; + +/* Solve Z' * x = RHS */ + + cgetc2_(&c__2, z__, &c__2, ipiv, jpiv, &ierr); + if (ierr > 0) { + *info = ierr; + } + cgesc2_(&c__2, z__, &c__2, rhs, ipiv, jpiv, &scaloc); + if (scaloc != 1.f) { + i__2 = *n; + for (k = 1; k <= i__2; ++k) { + q__1.r = scaloc, q__1.i = 0.f; + cscal_(m, &q__1, &c__[k * c_dim1 + 1], &c__1); + q__1.r = scaloc, q__1.i = 0.f; + cscal_(m, &q__1, &f[k * f_dim1 + 1], &c__1); +/* L40: */ + } + *scale *= scaloc; + } + +/* Unpack solution vector(s) */ + + i__2 = i__ + j * c_dim1; + c__[i__2].r = rhs[0].r, c__[i__2].i = rhs[0].i; + i__2 = i__ + j * f_dim1; + f[i__2].r = rhs[1].r, f[i__2].i = rhs[1].i; + +/* Substitute R(I, J) and L(I, J) into remaining equation. */ + + i__2 = j - 1; + for (k = 1; k <= i__2; ++k) { + i__3 = i__ + k * f_dim1; + i__4 = i__ + k * f_dim1; + r_cnjg(&q__4, &b[k + j * b_dim1]); + q__3.r = rhs[0].r * q__4.r - rhs[0].i * q__4.i, q__3.i = + rhs[0].r * q__4.i + rhs[0].i * q__4.r; + q__2.r = f[i__4].r + q__3.r, q__2.i = f[i__4].i + q__3.i; + r_cnjg(&q__6, &e[k + j * e_dim1]); + q__5.r = rhs[1].r * q__6.r - rhs[1].i * q__6.i, q__5.i = + rhs[1].r * q__6.i + rhs[1].i * q__6.r; + q__1.r = q__2.r + q__5.r, q__1.i = q__2.i + q__5.i; + f[i__3].r = q__1.r, f[i__3].i = q__1.i; +/* L50: */ + } + i__2 = *m; + for (k = i__ + 1; k <= i__2; ++k) { + i__3 = k + j * c_dim1; + i__4 = k + j * c_dim1; + r_cnjg(&q__4, &a[i__ + k * a_dim1]); + q__3.r = q__4.r * rhs[0].r - q__4.i * rhs[0].i, q__3.i = + q__4.r * rhs[0].i + q__4.i * rhs[0].r; + q__2.r = c__[i__4].r - q__3.r, q__2.i = c__[i__4].i - + q__3.i; + r_cnjg(&q__6, &d__[i__ + k * d_dim1]); + q__5.r = q__6.r * rhs[1].r - q__6.i * rhs[1].i, q__5.i = + q__6.r * rhs[1].i + q__6.i * rhs[1].r; + q__1.r = q__2.r - q__5.r, q__1.i = q__2.i - q__5.i; + c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; +/* L60: */ + } + +/* L70: */ + } +/* L80: */ + } + } + return 0; + +/* End of CTGSY2 */ + +} /* ctgsy2_ */ |