aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/ctgsna.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ctgsna.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ctgsna.c')
-rw-r--r--contrib/libs/clapack/ctgsna.c484
1 files changed, 484 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ctgsna.c b/contrib/libs/clapack/ctgsna.c
new file mode 100644
index 0000000000..d235cdb719
--- /dev/null
+++ b/contrib/libs/clapack/ctgsna.c
@@ -0,0 +1,484 @@
+/* ctgsna.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static complex c_b19 = {1.f,0.f};
+static complex c_b20 = {0.f,0.f};
+static logical c_false = FALSE_;
+static integer c__3 = 3;
+
+/* Subroutine */ int ctgsna_(char *job, char *howmny, logical *select,
+ integer *n, complex *a, integer *lda, complex *b, integer *ldb,
+ complex *vl, integer *ldvl, complex *vr, integer *ldvr, real *s, real
+ *dif, integer *mm, integer *m, complex *work, integer *lwork, integer
+ *iwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
+ vr_offset, i__1;
+ real r__1, r__2;
+ complex q__1;
+
+ /* Builtin functions */
+ double c_abs(complex *);
+
+ /* Local variables */
+ integer i__, k, n1, n2, ks;
+ real eps, cond;
+ integer ierr, ifst;
+ real lnrm;
+ complex yhax, yhbx;
+ integer ilst;
+ real rnrm, scale;
+ extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
+ *, complex *, integer *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
+, complex *, integer *, complex *, integer *, complex *, complex *
+, integer *);
+ integer lwmin;
+ logical wants;
+ complex dummy[1];
+ extern doublereal scnrm2_(integer *, complex *, integer *), slapy2_(real *
+, real *);
+ complex dummy1[1];
+ extern /* Subroutine */ int slabad_(real *, real *);
+ extern doublereal slamch_(char *);
+ extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex
+ *, integer *, complex *, integer *), ctgexc_(logical *,
+ logical *, integer *, complex *, integer *, complex *, integer *,
+ complex *, integer *, complex *, integer *, integer *, integer *,
+ integer *), xerbla_(char *, integer *);
+ real bignum;
+ logical wantbh, wantdf, somcon;
+ extern /* Subroutine */ int ctgsyl_(char *, integer *, integer *, integer
+ *, complex *, integer *, complex *, integer *, complex *, integer
+ *, complex *, integer *, complex *, integer *, complex *, integer
+ *, real *, real *, complex *, integer *, integer *, integer *);
+ real smlnum;
+ logical lquery;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CTGSNA estimates reciprocal condition numbers for specified */
+/* eigenvalues and/or eigenvectors of a matrix pair (A, B). */
+
+/* (A, B) must be in generalized Schur canonical form, that is, A and */
+/* B are both upper triangular. */
+
+/* Arguments */
+/* ========= */
+
+/* JOB (input) CHARACTER*1 */
+/* Specifies whether condition numbers are required for */
+/* eigenvalues (S) or eigenvectors (DIF): */
+/* = 'E': for eigenvalues only (S); */
+/* = 'V': for eigenvectors only (DIF); */
+/* = 'B': for both eigenvalues and eigenvectors (S and DIF). */
+
+/* HOWMNY (input) CHARACTER*1 */
+/* = 'A': compute condition numbers for all eigenpairs; */
+/* = 'S': compute condition numbers for selected eigenpairs */
+/* specified by the array SELECT. */
+
+/* SELECT (input) LOGICAL array, dimension (N) */
+/* If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
+/* condition numbers are required. To select condition numbers */
+/* for the corresponding j-th eigenvalue and/or eigenvector, */
+/* SELECT(j) must be set to .TRUE.. */
+/* If HOWMNY = 'A', SELECT is not referenced. */
+
+/* N (input) INTEGER */
+/* The order of the square matrix pair (A, B). N >= 0. */
+
+/* A (input) COMPLEX array, dimension (LDA,N) */
+/* The upper triangular matrix A in the pair (A,B). */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* B (input) COMPLEX array, dimension (LDB,N) */
+/* The upper triangular matrix B in the pair (A, B). */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* VL (input) COMPLEX array, dimension (LDVL,M) */
+/* IF JOB = 'E' or 'B', VL must contain left eigenvectors of */
+/* (A, B), corresponding to the eigenpairs specified by HOWMNY */
+/* and SELECT. The eigenvectors must be stored in consecutive */
+/* columns of VL, as returned by CTGEVC. */
+/* If JOB = 'V', VL is not referenced. */
+
+/* LDVL (input) INTEGER */
+/* The leading dimension of the array VL. LDVL >= 1; and */
+/* If JOB = 'E' or 'B', LDVL >= N. */
+
+/* VR (input) COMPLEX array, dimension (LDVR,M) */
+/* IF JOB = 'E' or 'B', VR must contain right eigenvectors of */
+/* (A, B), corresponding to the eigenpairs specified by HOWMNY */
+/* and SELECT. The eigenvectors must be stored in consecutive */
+/* columns of VR, as returned by CTGEVC. */
+/* If JOB = 'V', VR is not referenced. */
+
+/* LDVR (input) INTEGER */
+/* The leading dimension of the array VR. LDVR >= 1; */
+/* If JOB = 'E' or 'B', LDVR >= N. */
+
+/* S (output) REAL array, dimension (MM) */
+/* If JOB = 'E' or 'B', the reciprocal condition numbers of the */
+/* selected eigenvalues, stored in consecutive elements of the */
+/* array. */
+/* If JOB = 'V', S is not referenced. */
+
+/* DIF (output) REAL array, dimension (MM) */
+/* If JOB = 'V' or 'B', the estimated reciprocal condition */
+/* numbers of the selected eigenvectors, stored in consecutive */
+/* elements of the array. */
+/* If the eigenvalues cannot be reordered to compute DIF(j), */
+/* DIF(j) is set to 0; this can only occur when the true value */
+/* would be very small anyway. */
+/* For each eigenvalue/vector specified by SELECT, DIF stores */
+/* a Frobenius norm-based estimate of Difl. */
+/* If JOB = 'E', DIF is not referenced. */
+
+/* MM (input) INTEGER */
+/* The number of elements in the arrays S and DIF. MM >= M. */
+
+/* M (output) INTEGER */
+/* The number of elements of the arrays S and DIF used to store */
+/* the specified condition numbers; for each selected eigenvalue */
+/* one element is used. If HOWMNY = 'A', M is set to N. */
+
+/* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. LWORK >= max(1,N). */
+/* If JOB = 'V' or 'B', LWORK >= max(1,2*N*N). */
+
+/* IWORK (workspace) INTEGER array, dimension (N+2) */
+/* If JOB = 'E', IWORK is not referenced. */
+
+/* INFO (output) INTEGER */
+/* = 0: Successful exit */
+/* < 0: If INFO = -i, the i-th argument had an illegal value */
+
+/* Further Details */
+/* =============== */
+
+/* The reciprocal of the condition number of the i-th generalized */
+/* eigenvalue w = (a, b) is defined as */
+
+/* S(I) = (|v'Au|**2 + |v'Bu|**2)**(1/2) / (norm(u)*norm(v)) */
+
+/* where u and v are the right and left eigenvectors of (A, B) */
+/* corresponding to w; |z| denotes the absolute value of the complex */
+/* number, and norm(u) denotes the 2-norm of the vector u. The pair */
+/* (a, b) corresponds to an eigenvalue w = a/b (= v'Au/v'Bu) of the */
+/* matrix pair (A, B). If both a and b equal zero, then (A,B) is */
+/* singular and S(I) = -1 is returned. */
+
+/* An approximate error bound on the chordal distance between the i-th */
+/* computed generalized eigenvalue w and the corresponding exact */
+/* eigenvalue lambda is */
+
+/* chord(w, lambda) <= EPS * norm(A, B) / S(I), */
+
+/* where EPS is the machine precision. */
+
+/* The reciprocal of the condition number of the right eigenvector u */
+/* and left eigenvector v corresponding to the generalized eigenvalue w */
+/* is defined as follows. Suppose */
+
+/* (A, B) = ( a * ) ( b * ) 1 */
+/* ( 0 A22 ),( 0 B22 ) n-1 */
+/* 1 n-1 1 n-1 */
+
+/* Then the reciprocal condition number DIF(I) is */
+
+/* Difl[(a, b), (A22, B22)] = sigma-min( Zl ) */
+
+/* where sigma-min(Zl) denotes the smallest singular value of */
+
+/* Zl = [ kron(a, In-1) -kron(1, A22) ] */
+/* [ kron(b, In-1) -kron(1, B22) ]. */
+
+/* Here In-1 is the identity matrix of size n-1 and X' is the conjugate */
+/* transpose of X. kron(X, Y) is the Kronecker product between the */
+/* matrices X and Y. */
+
+/* We approximate the smallest singular value of Zl with an upper */
+/* bound. This is done by CLATDF. */
+
+/* An approximate error bound for a computed eigenvector VL(i) or */
+/* VR(i) is given by */
+
+/* EPS * norm(A, B) / DIF(i). */
+
+/* See ref. [2-3] for more details and further references. */
+
+/* Based on contributions by */
+/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
+/* Umea University, S-901 87 Umea, Sweden. */
+
+/* References */
+/* ========== */
+
+/* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
+/* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
+/* M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
+/* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
+
+/* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
+/* Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
+/* Estimation: Theory, Algorithms and Software, Report */
+/* UMINF - 94.04, Department of Computing Science, Umea University, */
+/* S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. */
+/* To appear in Numerical Algorithms, 1996. */
+
+/* [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
+/* for Solving the Generalized Sylvester Equation and Estimating the */
+/* Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
+/* Department of Computing Science, Umea University, S-901 87 Umea, */
+/* Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
+/* Note 75. */
+/* To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Decode and test the input parameters */
+
+ /* Parameter adjustments */
+ --select;
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ vl_dim1 = *ldvl;
+ vl_offset = 1 + vl_dim1;
+ vl -= vl_offset;
+ vr_dim1 = *ldvr;
+ vr_offset = 1 + vr_dim1;
+ vr -= vr_offset;
+ --s;
+ --dif;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ wantbh = lsame_(job, "B");
+ wants = lsame_(job, "E") || wantbh;
+ wantdf = lsame_(job, "V") || wantbh;
+
+ somcon = lsame_(howmny, "S");
+
+ *info = 0;
+ lquery = *lwork == -1;
+
+ if (! wants && ! wantdf) {
+ *info = -1;
+ } else if (! lsame_(howmny, "A") && ! somcon) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*lda < max(1,*n)) {
+ *info = -6;
+ } else if (*ldb < max(1,*n)) {
+ *info = -8;
+ } else if (wants && *ldvl < *n) {
+ *info = -10;
+ } else if (wants && *ldvr < *n) {
+ *info = -12;
+ } else {
+
+/* Set M to the number of eigenpairs for which condition numbers */
+/* are required, and test MM. */
+
+ if (somcon) {
+ *m = 0;
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+ if (select[k]) {
+ ++(*m);
+ }
+/* L10: */
+ }
+ } else {
+ *m = *n;
+ }
+
+ if (*n == 0) {
+ lwmin = 1;
+ } else if (lsame_(job, "V") || lsame_(job,
+ "B")) {
+ lwmin = (*n << 1) * *n;
+ } else {
+ lwmin = *n;
+ }
+ work[1].r = (real) lwmin, work[1].i = 0.f;
+
+ if (*mm < *m) {
+ *info = -15;
+ } else if (*lwork < lwmin && ! lquery) {
+ *info = -18;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CTGSNA", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Get machine constants */
+
+ eps = slamch_("P");
+ smlnum = slamch_("S") / eps;
+ bignum = 1.f / smlnum;
+ slabad_(&smlnum, &bignum);
+ ks = 0;
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+
+/* Determine whether condition numbers are required for the k-th */
+/* eigenpair. */
+
+ if (somcon) {
+ if (! select[k]) {
+ goto L20;
+ }
+ }
+
+ ++ks;
+
+ if (wants) {
+
+/* Compute the reciprocal condition number of the k-th */
+/* eigenvalue. */
+
+ rnrm = scnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
+ lnrm = scnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
+ cgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1 + 1]
+, &c__1, &c_b20, &work[1], &c__1);
+ cdotc_(&q__1, n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1);
+ yhax.r = q__1.r, yhax.i = q__1.i;
+ cgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1 + 1]
+, &c__1, &c_b20, &work[1], &c__1);
+ cdotc_(&q__1, n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1);
+ yhbx.r = q__1.r, yhbx.i = q__1.i;
+ r__1 = c_abs(&yhax);
+ r__2 = c_abs(&yhbx);
+ cond = slapy2_(&r__1, &r__2);
+ if (cond == 0.f) {
+ s[ks] = -1.f;
+ } else {
+ s[ks] = cond / (rnrm * lnrm);
+ }
+ }
+
+ if (wantdf) {
+ if (*n == 1) {
+ r__1 = c_abs(&a[a_dim1 + 1]);
+ r__2 = c_abs(&b[b_dim1 + 1]);
+ dif[ks] = slapy2_(&r__1, &r__2);
+ } else {
+
+/* Estimate the reciprocal condition number of the k-th */
+/* eigenvectors. */
+
+/* Copy the matrix (A, B) to the array WORK and move the */
+/* (k,k)th pair to the (1,1) position. */
+
+ clacpy_("Full", n, n, &a[a_offset], lda, &work[1], n);
+ clacpy_("Full", n, n, &b[b_offset], ldb, &work[*n * *n + 1],
+ n);
+ ifst = k;
+ ilst = 1;
+
+ ctgexc_(&c_false, &c_false, n, &work[1], n, &work[*n * *n + 1]
+, n, dummy, &c__1, dummy1, &c__1, &ifst, &ilst, &ierr)
+ ;
+
+ if (ierr > 0) {
+
+/* Ill-conditioned problem - swap rejected. */
+
+ dif[ks] = 0.f;
+ } else {
+
+/* Reordering successful, solve generalized Sylvester */
+/* equation for R and L, */
+/* A22 * R - L * A11 = A12 */
+/* B22 * R - L * B11 = B12, */
+/* and compute estimate of Difl[(A11,B11), (A22, B22)]. */
+
+ n1 = 1;
+ n2 = *n - n1;
+ i__ = *n * *n + 1;
+ ctgsyl_("N", &c__3, &n2, &n1, &work[*n * n1 + n1 + 1], n,
+ &work[1], n, &work[n1 + 1], n, &work[*n * n1 + n1
+ + i__], n, &work[i__], n, &work[n1 + i__], n, &
+ scale, &dif[ks], dummy, &c__1, &iwork[1], &ierr);
+ }
+ }
+ }
+
+L20:
+ ;
+ }
+ work[1].r = (real) lwmin, work[1].i = 0.f;
+ return 0;
+
+/* End of CTGSNA */
+
+} /* ctgsna_ */