aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/csyequb.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/csyequb.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/csyequb.c')
-rw-r--r--contrib/libs/clapack/csyequb.c451
1 files changed, 451 insertions, 0 deletions
diff --git a/contrib/libs/clapack/csyequb.c b/contrib/libs/clapack/csyequb.c
new file mode 100644
index 0000000000..d2e20e34ca
--- /dev/null
+++ b/contrib/libs/clapack/csyequb.c
@@ -0,0 +1,451 @@
+/* csyequb.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+
+/* Subroutine */ int csyequb_(char *uplo, integer *n, complex *a, integer *
+ lda, real *s, real *scond, real *amax, complex *work, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ real r__1, r__2, r__3, r__4;
+ doublereal d__1;
+ complex q__1, q__2, q__3, q__4;
+
+ /* Builtin functions */
+ double r_imag(complex *), sqrt(doublereal), log(doublereal), pow_ri(real *
+ , integer *);
+
+ /* Local variables */
+ real d__;
+ integer i__, j;
+ real t, u, c0, c1, c2, si;
+ logical up;
+ real avg, std, tol, base;
+ integer iter;
+ real smin, smax, scale;
+ extern logical lsame_(char *, char *);
+ real sumsq;
+ extern doublereal slamch_(char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ real bignum;
+ extern /* Subroutine */ int classq_(integer *, complex *, integer *, real
+ *, real *);
+ real smlnum;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
+/* -- Jason Riedy of Univ. of California Berkeley. -- */
+/* -- November 2008 -- */
+
+/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
+/* -- Univ. of California Berkeley and NAG Ltd. -- */
+
+/* .. */
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CSYEQUB computes row and column scalings intended to equilibrate a */
+/* symmetric matrix A and reduce its condition number */
+/* (with respect to the two-norm). S contains the scale factors, */
+/* S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with */
+/* elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This */
+/* choice of S puts the condition number of B within a factor N of the */
+/* smallest possible condition number over all possible diagonal */
+/* scalings. */
+
+/* Arguments */
+/* ========= */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* A (input) COMPLEX array, dimension (LDA,N) */
+/* The N-by-N symmetric matrix whose scaling */
+/* factors are to be computed. Only the diagonal elements of A */
+/* are referenced. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* S (output) REAL array, dimension (N) */
+/* If INFO = 0, S contains the scale factors for A. */
+
+/* SCOND (output) REAL */
+/* If INFO = 0, S contains the ratio of the smallest S(i) to */
+/* the largest S(i). If SCOND >= 0.1 and AMAX is neither too */
+/* large nor too small, it is not worth scaling by S. */
+
+/* AMAX (output) REAL */
+/* Absolute value of largest matrix element. If AMAX is very */
+/* close to overflow or very close to underflow, the matrix */
+/* should be scaled. */
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, the i-th diagonal element is nonpositive. */
+
+/* Further Details */
+/* ======= ======= */
+
+/* Reference: Livne, O.E. and Golub, G.H., "Scaling by Binormalization", */
+/* Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. */
+/* DOI 10.1023/B:NUMA.0000016606.32820.69 */
+/* Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Statement Functions .. */
+/* .. */
+/* Statement Function Definitions */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --s;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ if (! (lsame_(uplo, "U") || lsame_(uplo, "L"))) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*n)) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CSYEQUB", &i__1);
+ return 0;
+ }
+ up = lsame_(uplo, "U");
+ *amax = 0.f;
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ *scond = 1.f;
+ return 0;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ s[i__] = 0.f;
+ }
+ *amax = 0.f;
+ if (up) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+/* Computing MAX */
+ i__3 = i__ + j * a_dim1;
+ r__3 = s[i__], r__4 = (r__1 = a[i__3].r, dabs(r__1)) + (r__2 =
+ r_imag(&a[i__ + j * a_dim1]), dabs(r__2));
+ s[i__] = dmax(r__3,r__4);
+/* Computing MAX */
+ i__3 = i__ + j * a_dim1;
+ r__3 = s[j], r__4 = (r__1 = a[i__3].r, dabs(r__1)) + (r__2 =
+ r_imag(&a[i__ + j * a_dim1]), dabs(r__2));
+ s[j] = dmax(r__3,r__4);
+/* Computing MAX */
+ i__3 = i__ + j * a_dim1;
+ r__3 = *amax, r__4 = (r__1 = a[i__3].r, dabs(r__1)) + (r__2 =
+ r_imag(&a[i__ + j * a_dim1]), dabs(r__2));
+ *amax = dmax(r__3,r__4);
+ }
+/* Computing MAX */
+ i__2 = j + j * a_dim1;
+ r__3 = s[j], r__4 = (r__1 = a[i__2].r, dabs(r__1)) + (r__2 =
+ r_imag(&a[j + j * a_dim1]), dabs(r__2));
+ s[j] = dmax(r__3,r__4);
+/* Computing MAX */
+ i__2 = j + j * a_dim1;
+ r__3 = *amax, r__4 = (r__1 = a[i__2].r, dabs(r__1)) + (r__2 =
+ r_imag(&a[j + j * a_dim1]), dabs(r__2));
+ *amax = dmax(r__3,r__4);
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MAX */
+ i__2 = j + j * a_dim1;
+ r__3 = s[j], r__4 = (r__1 = a[i__2].r, dabs(r__1)) + (r__2 =
+ r_imag(&a[j + j * a_dim1]), dabs(r__2));
+ s[j] = dmax(r__3,r__4);
+/* Computing MAX */
+ i__2 = j + j * a_dim1;
+ r__3 = *amax, r__4 = (r__1 = a[i__2].r, dabs(r__1)) + (r__2 =
+ r_imag(&a[j + j * a_dim1]), dabs(r__2));
+ *amax = dmax(r__3,r__4);
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+/* Computing MAX */
+ i__3 = i__ + j * a_dim1;
+ r__3 = s[i__], r__4 = (r__1 = a[i__3].r, dabs(r__1)) + (r__2 =
+ r_imag(&a[i__ + j * a_dim1]), dabs(r__2));
+ s[i__] = dmax(r__3,r__4);
+/* Computing MAX */
+ i__3 = i__ + j * a_dim1;
+ r__3 = s[j], r__4 = (r__1 = a[i__3].r, dabs(r__1)) + (r__2 =
+ r_imag(&a[i__ + j * a_dim1]), dabs(r__2));
+ s[j] = dmax(r__3,r__4);
+/* Computing MAX */
+ i__3 = i__ + j * a_dim1;
+ r__3 = *amax, r__4 = (r__1 = a[i__3].r, dabs(r__1)) + (r__2 =
+ r_imag(&a[i__ + j * a_dim1]), dabs(r__2));
+ *amax = dmax(r__3,r__4);
+ }
+ }
+ }
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ s[j] = 1.f / s[j];
+ }
+ tol = 1.f / sqrt(*n * 2.f);
+ for (iter = 1; iter <= 100; ++iter) {
+ scale = 0.f;
+ sumsq = 0.f;
+/* beta = |A|s */
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ work[i__2].r = 0.f, work[i__2].i = 0.f;
+ }
+ if (up) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ t = (r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(&a[
+ i__ + j * a_dim1]), dabs(r__2));
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = i__ + j * a_dim1;
+ r__3 = ((r__1 = a[i__5].r, dabs(r__1)) + (r__2 = r_imag(&
+ a[i__ + j * a_dim1]), dabs(r__2))) * s[j];
+ q__1.r = work[i__4].r + r__3, q__1.i = work[i__4].i;
+ work[i__3].r = q__1.r, work[i__3].i = q__1.i;
+ i__3 = j;
+ i__4 = j;
+ i__5 = i__ + j * a_dim1;
+ r__3 = ((r__1 = a[i__5].r, dabs(r__1)) + (r__2 = r_imag(&
+ a[i__ + j * a_dim1]), dabs(r__2))) * s[i__];
+ q__1.r = work[i__4].r + r__3, q__1.i = work[i__4].i;
+ work[i__3].r = q__1.r, work[i__3].i = q__1.i;
+ }
+ i__2 = j;
+ i__3 = j;
+ i__4 = j + j * a_dim1;
+ r__3 = ((r__1 = a[i__4].r, dabs(r__1)) + (r__2 = r_imag(&a[j
+ + j * a_dim1]), dabs(r__2))) * s[j];
+ q__1.r = work[i__3].r + r__3, q__1.i = work[i__3].i;
+ work[i__2].r = q__1.r, work[i__2].i = q__1.i;
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ i__3 = j;
+ i__4 = j + j * a_dim1;
+ r__3 = ((r__1 = a[i__4].r, dabs(r__1)) + (r__2 = r_imag(&a[j
+ + j * a_dim1]), dabs(r__2))) * s[j];
+ q__1.r = work[i__3].r + r__3, q__1.i = work[i__3].i;
+ work[i__2].r = q__1.r, work[i__2].i = q__1.i;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ t = (r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(&a[
+ i__ + j * a_dim1]), dabs(r__2));
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = i__ + j * a_dim1;
+ r__3 = ((r__1 = a[i__5].r, dabs(r__1)) + (r__2 = r_imag(&
+ a[i__ + j * a_dim1]), dabs(r__2))) * s[j];
+ q__1.r = work[i__4].r + r__3, q__1.i = work[i__4].i;
+ work[i__3].r = q__1.r, work[i__3].i = q__1.i;
+ i__3 = j;
+ i__4 = j;
+ i__5 = i__ + j * a_dim1;
+ r__3 = ((r__1 = a[i__5].r, dabs(r__1)) + (r__2 = r_imag(&
+ a[i__ + j * a_dim1]), dabs(r__2))) * s[i__];
+ q__1.r = work[i__4].r + r__3, q__1.i = work[i__4].i;
+ work[i__3].r = q__1.r, work[i__3].i = q__1.i;
+ }
+ }
+ }
+/* avg = s^T beta / n */
+ avg = 0.f;
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ q__2.r = s[i__2] * work[i__3].r, q__2.i = s[i__2] * work[i__3].i;
+ q__1.r = avg + q__2.r, q__1.i = q__2.i;
+ avg = q__1.r;
+ }
+ avg /= *n;
+ std = 0.f;
+ i__1 = *n << 1;
+ for (i__ = *n + 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ i__3 = i__ - *n;
+ i__4 = i__ - *n;
+ q__2.r = s[i__3] * work[i__4].r, q__2.i = s[i__3] * work[i__4].i;
+ q__1.r = q__2.r - avg, q__1.i = q__2.i;
+ work[i__2].r = q__1.r, work[i__2].i = q__1.i;
+ }
+ classq_(n, &work[*n + 1], &c__1, &scale, &sumsq);
+ std = scale * sqrt(sumsq / *n);
+ if (std < tol * avg) {
+ goto L999;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__ + i__ * a_dim1;
+ t = (r__1 = a[i__2].r, dabs(r__1)) + (r__2 = r_imag(&a[i__ + i__ *
+ a_dim1]), dabs(r__2));
+ si = s[i__];
+ c2 = (*n - 1) * t;
+ i__2 = *n - 2;
+ i__3 = i__;
+ r__1 = t * si;
+ q__2.r = work[i__3].r - r__1, q__2.i = work[i__3].i;
+ d__1 = (doublereal) i__2;
+ q__1.r = d__1 * q__2.r, q__1.i = d__1 * q__2.i;
+ c1 = q__1.r;
+ r__1 = -(t * si) * si;
+ i__2 = i__;
+ d__1 = 2.;
+ q__4.r = d__1 * work[i__2].r, q__4.i = d__1 * work[i__2].i;
+ q__3.r = si * q__4.r, q__3.i = si * q__4.i;
+ q__2.r = r__1 + q__3.r, q__2.i = q__3.i;
+ r__2 = *n * avg;
+ q__1.r = q__2.r - r__2, q__1.i = q__2.i;
+ c0 = q__1.r;
+ d__ = c1 * c1 - c0 * 4 * c2;
+ if (d__ <= 0.f) {
+ *info = -1;
+ return 0;
+ }
+ si = c0 * -2 / (c1 + sqrt(d__));
+ d__ = si - s[i__];
+ u = 0.f;
+ if (up) {
+ i__2 = i__;
+ for (j = 1; j <= i__2; ++j) {
+ i__3 = j + i__ * a_dim1;
+ t = (r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(&a[j
+ + i__ * a_dim1]), dabs(r__2));
+ u += s[j] * t;
+ i__3 = j;
+ i__4 = j;
+ r__1 = d__ * t;
+ q__1.r = work[i__4].r + r__1, q__1.i = work[i__4].i;
+ work[i__3].r = q__1.r, work[i__3].i = q__1.i;
+ }
+ i__2 = *n;
+ for (j = i__ + 1; j <= i__2; ++j) {
+ i__3 = i__ + j * a_dim1;
+ t = (r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(&a[
+ i__ + j * a_dim1]), dabs(r__2));
+ u += s[j] * t;
+ i__3 = j;
+ i__4 = j;
+ r__1 = d__ * t;
+ q__1.r = work[i__4].r + r__1, q__1.i = work[i__4].i;
+ work[i__3].r = q__1.r, work[i__3].i = q__1.i;
+ }
+ } else {
+ i__2 = i__;
+ for (j = 1; j <= i__2; ++j) {
+ i__3 = i__ + j * a_dim1;
+ t = (r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(&a[
+ i__ + j * a_dim1]), dabs(r__2));
+ u += s[j] * t;
+ i__3 = j;
+ i__4 = j;
+ r__1 = d__ * t;
+ q__1.r = work[i__4].r + r__1, q__1.i = work[i__4].i;
+ work[i__3].r = q__1.r, work[i__3].i = q__1.i;
+ }
+ i__2 = *n;
+ for (j = i__ + 1; j <= i__2; ++j) {
+ i__3 = j + i__ * a_dim1;
+ t = (r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(&a[j
+ + i__ * a_dim1]), dabs(r__2));
+ u += s[j] * t;
+ i__3 = j;
+ i__4 = j;
+ r__1 = d__ * t;
+ q__1.r = work[i__4].r + r__1, q__1.i = work[i__4].i;
+ work[i__3].r = q__1.r, work[i__3].i = q__1.i;
+ }
+ }
+ i__2 = i__;
+ q__4.r = u + work[i__2].r, q__4.i = work[i__2].i;
+ q__3.r = d__ * q__4.r, q__3.i = d__ * q__4.i;
+ d__1 = (doublereal) (*n);
+ q__2.r = q__3.r / d__1, q__2.i = q__3.i / d__1;
+ q__1.r = avg + q__2.r, q__1.i = q__2.i;
+ avg = q__1.r;
+ s[i__] = si;
+ }
+ }
+L999:
+ smlnum = slamch_("SAFEMIN");
+ bignum = 1.f / smlnum;
+ smin = bignum;
+ smax = 0.f;
+ t = 1.f / sqrt(avg);
+ base = slamch_("B");
+ u = 1.f / log(base);
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = (integer) (u * log(s[i__] * t));
+ s[i__] = pow_ri(&base, &i__2);
+/* Computing MIN */
+ r__1 = smin, r__2 = s[i__];
+ smin = dmin(r__1,r__2);
+/* Computing MAX */
+ r__1 = smax, r__2 = s[i__];
+ smax = dmax(r__1,r__2);
+ }
+ *scond = dmax(smin,smlnum) / dmin(smax,bignum);
+
+ return 0;
+} /* csyequb_ */