aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/cpotf2.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cpotf2.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cpotf2.c')
-rw-r--r--contrib/libs/clapack/cpotf2.c245
1 files changed, 245 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cpotf2.c b/contrib/libs/clapack/cpotf2.c
new file mode 100644
index 0000000000..53ff86252a
--- /dev/null
+++ b/contrib/libs/clapack/cpotf2.c
@@ -0,0 +1,245 @@
+/* cpotf2.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static complex c_b1 = {1.f,0.f};
+static integer c__1 = 1;
+
+/* Subroutine */ int cpotf2_(char *uplo, integer *n, complex *a, integer *lda,
+ integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3;
+ real r__1;
+ complex q__1, q__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer j;
+ real ajj;
+ extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
+ *, complex *, integer *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
+, complex *, integer *, complex *, integer *, complex *, complex *
+, integer *);
+ logical upper;
+ extern /* Subroutine */ int clacgv_(integer *, complex *, integer *),
+ csscal_(integer *, real *, complex *, integer *), xerbla_(char *,
+ integer *);
+ extern logical sisnan_(real *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CPOTF2 computes the Cholesky factorization of a complex Hermitian */
+/* positive definite matrix A. */
+
+/* The factorization has the form */
+/* A = U' * U , if UPLO = 'U', or */
+/* A = L * L', if UPLO = 'L', */
+/* where U is an upper triangular matrix and L is lower triangular. */
+
+/* This is the unblocked version of the algorithm, calling Level 2 BLAS. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* Specifies whether the upper or lower triangular part of the */
+/* Hermitian matrix A is stored. */
+/* = 'U': Upper triangular */
+/* = 'L': Lower triangular */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* A (input/output) COMPLEX array, dimension (LDA,N) */
+/* On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
+/* n by n upper triangular part of A contains the upper */
+/* triangular part of the matrix A, and the strictly lower */
+/* triangular part of A is not referenced. If UPLO = 'L', the */
+/* leading n by n lower triangular part of A contains the lower */
+/* triangular part of the matrix A, and the strictly upper */
+/* triangular part of A is not referenced. */
+
+/* On exit, if INFO = 0, the factor U or L from the Cholesky */
+/* factorization A = U'*U or A = L*L'. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -k, the k-th argument had an illegal value */
+/* > 0: if INFO = k, the leading minor of order k is not */
+/* positive definite, and the factorization could not be */
+/* completed. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*n)) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CPOTF2", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ if (upper) {
+
+/* Compute the Cholesky factorization A = U'*U. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Compute U(J,J) and test for non-positive-definiteness. */
+
+ i__2 = j + j * a_dim1;
+ r__1 = a[i__2].r;
+ i__3 = j - 1;
+ cdotc_(&q__2, &i__3, &a[j * a_dim1 + 1], &c__1, &a[j * a_dim1 + 1]
+, &c__1);
+ q__1.r = r__1 - q__2.r, q__1.i = -q__2.i;
+ ajj = q__1.r;
+ if (ajj <= 0.f || sisnan_(&ajj)) {
+ i__2 = j + j * a_dim1;
+ a[i__2].r = ajj, a[i__2].i = 0.f;
+ goto L30;
+ }
+ ajj = sqrt(ajj);
+ i__2 = j + j * a_dim1;
+ a[i__2].r = ajj, a[i__2].i = 0.f;
+
+/* Compute elements J+1:N of row J. */
+
+ if (j < *n) {
+ i__2 = j - 1;
+ clacgv_(&i__2, &a[j * a_dim1 + 1], &c__1);
+ i__2 = j - 1;
+ i__3 = *n - j;
+ q__1.r = -1.f, q__1.i = -0.f;
+ cgemv_("Transpose", &i__2, &i__3, &q__1, &a[(j + 1) * a_dim1
+ + 1], lda, &a[j * a_dim1 + 1], &c__1, &c_b1, &a[j + (
+ j + 1) * a_dim1], lda);
+ i__2 = j - 1;
+ clacgv_(&i__2, &a[j * a_dim1 + 1], &c__1);
+ i__2 = *n - j;
+ r__1 = 1.f / ajj;
+ csscal_(&i__2, &r__1, &a[j + (j + 1) * a_dim1], lda);
+ }
+/* L10: */
+ }
+ } else {
+
+/* Compute the Cholesky factorization A = L*L'. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Compute L(J,J) and test for non-positive-definiteness. */
+
+ i__2 = j + j * a_dim1;
+ r__1 = a[i__2].r;
+ i__3 = j - 1;
+ cdotc_(&q__2, &i__3, &a[j + a_dim1], lda, &a[j + a_dim1], lda);
+ q__1.r = r__1 - q__2.r, q__1.i = -q__2.i;
+ ajj = q__1.r;
+ if (ajj <= 0.f || sisnan_(&ajj)) {
+ i__2 = j + j * a_dim1;
+ a[i__2].r = ajj, a[i__2].i = 0.f;
+ goto L30;
+ }
+ ajj = sqrt(ajj);
+ i__2 = j + j * a_dim1;
+ a[i__2].r = ajj, a[i__2].i = 0.f;
+
+/* Compute elements J+1:N of column J. */
+
+ if (j < *n) {
+ i__2 = j - 1;
+ clacgv_(&i__2, &a[j + a_dim1], lda);
+ i__2 = *n - j;
+ i__3 = j - 1;
+ q__1.r = -1.f, q__1.i = -0.f;
+ cgemv_("No transpose", &i__2, &i__3, &q__1, &a[j + 1 + a_dim1]
+, lda, &a[j + a_dim1], lda, &c_b1, &a[j + 1 + j *
+ a_dim1], &c__1);
+ i__2 = j - 1;
+ clacgv_(&i__2, &a[j + a_dim1], lda);
+ i__2 = *n - j;
+ r__1 = 1.f / ajj;
+ csscal_(&i__2, &r__1, &a[j + 1 + j * a_dim1], &c__1);
+ }
+/* L20: */
+ }
+ }
+ goto L40;
+
+L30:
+ *info = j;
+
+L40:
+ return 0;
+
+/* End of CPOTF2 */
+
+} /* cpotf2_ */