diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cpftrs.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cpftrs.c')
-rw-r--r-- | contrib/libs/clapack/cpftrs.c | 260 |
1 files changed, 260 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cpftrs.c b/contrib/libs/clapack/cpftrs.c new file mode 100644 index 0000000000..7c42d2679e --- /dev/null +++ b/contrib/libs/clapack/cpftrs.c @@ -0,0 +1,260 @@ +/* cpftrs.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static complex c_b1 = {1.f,0.f}; + +/* Subroutine */ int cpftrs_(char *transr, char *uplo, integer *n, integer * + nrhs, complex *a, complex *b, integer *ldb, integer *info) +{ + /* System generated locals */ + integer b_dim1, b_offset, i__1; + + /* Local variables */ + logical normaltransr; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int ctfsm_(char *, char *, char *, char *, char *, + integer *, integer *, complex *, complex *, complex *, integer *); + logical lower; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* -- LAPACK routine (version 3.2) -- */ + +/* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */ +/* -- November 2008 -- */ + +/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ +/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CPFTRS solves a system of linear equations A*X = B with a Hermitian */ +/* positive definite matrix A using the Cholesky factorization */ +/* A = U**H*U or A = L*L**H computed by CPFTRF. */ + +/* Arguments */ +/* ========= */ + +/* TRANSR (input) CHARACTER */ +/* = 'N': The Normal TRANSR of RFP A is stored; */ +/* = 'C': The Conjugate-transpose TRANSR of RFP A is stored. */ + +/* UPLO (input) CHARACTER */ +/* = 'U': Upper triangle of RFP A is stored; */ +/* = 'L': Lower triangle of RFP A is stored. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* NRHS (input) INTEGER */ +/* The number of right hand sides, i.e., the number of columns */ +/* of the matrix B. NRHS >= 0. */ + +/* A (input) COMPLEX array, dimension ( N*(N+1)/2 ); */ +/* The triangular factor U or L from the Cholesky factorization */ +/* of RFP A = U**H*U or RFP A = L*L**H, as computed by CPFTRF. */ +/* See note below for more details about RFP A. */ + +/* B (input/output) COMPLEX array, dimension (LDB,NRHS) */ +/* On entry, the right hand side matrix B. */ +/* On exit, the solution matrix X. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,N). */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ + +/* Note: */ +/* ===== */ + +/* We first consider Standard Packed Format when N is even. */ +/* We give an example where N = 6. */ + +/* AP is Upper AP is Lower */ + +/* 00 01 02 03 04 05 00 */ +/* 11 12 13 14 15 10 11 */ +/* 22 23 24 25 20 21 22 */ +/* 33 34 35 30 31 32 33 */ +/* 44 45 40 41 42 43 44 */ +/* 55 50 51 52 53 54 55 */ + + +/* Let TRANSR = 'N'. RFP holds AP as follows: */ +/* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */ +/* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */ +/* conjugate-transpose of the first three columns of AP upper. */ +/* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */ +/* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */ +/* conjugate-transpose of the last three columns of AP lower. */ +/* To denote conjugate we place -- above the element. This covers the */ +/* case N even and TRANSR = 'N'. */ + +/* RFP A RFP A */ + +/* -- -- -- */ +/* 03 04 05 33 43 53 */ +/* -- -- */ +/* 13 14 15 00 44 54 */ +/* -- */ +/* 23 24 25 10 11 55 */ + +/* 33 34 35 20 21 22 */ +/* -- */ +/* 00 44 45 30 31 32 */ +/* -- -- */ +/* 01 11 55 40 41 42 */ +/* -- -- -- */ +/* 02 12 22 50 51 52 */ + +/* Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */ +/* transpose of RFP A above. One therefore gets: */ + + +/* RFP A RFP A */ + +/* -- -- -- -- -- -- -- -- -- -- */ +/* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */ +/* -- -- -- -- -- -- -- -- -- -- */ +/* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */ +/* -- -- -- -- -- -- -- -- -- -- */ +/* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */ + + +/* We next consider Standard Packed Format when N is odd. */ +/* We give an example where N = 5. */ + +/* AP is Upper AP is Lower */ + +/* 00 01 02 03 04 00 */ +/* 11 12 13 14 10 11 */ +/* 22 23 24 20 21 22 */ +/* 33 34 30 31 32 33 */ +/* 44 40 41 42 43 44 */ + + +/* Let TRANSR = 'N'. RFP holds AP as follows: */ +/* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */ +/* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */ +/* conjugate-transpose of the first two columns of AP upper. */ +/* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */ +/* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */ +/* conjugate-transpose of the last two columns of AP lower. */ +/* To denote conjugate we place -- above the element. This covers the */ +/* case N odd and TRANSR = 'N'. */ + +/* RFP A RFP A */ + +/* -- -- */ +/* 02 03 04 00 33 43 */ +/* -- */ +/* 12 13 14 10 11 44 */ + +/* 22 23 24 20 21 22 */ +/* -- */ +/* 00 33 34 30 31 32 */ +/* -- -- */ +/* 01 11 44 40 41 42 */ + +/* Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */ +/* transpose of RFP A above. One therefore gets: */ + + +/* RFP A RFP A */ + +/* -- -- -- -- -- -- -- -- -- */ +/* 02 12 22 00 01 00 10 20 30 40 50 */ +/* -- -- -- -- -- -- -- -- -- */ +/* 03 13 23 33 11 33 11 21 31 41 51 */ +/* -- -- -- -- -- -- -- -- -- */ +/* 04 14 24 34 44 43 44 22 32 42 52 */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + *info = 0; + normaltransr = lsame_(transr, "N"); + lower = lsame_(uplo, "L"); + if (! normaltransr && ! lsame_(transr, "C")) { + *info = -1; + } else if (! lower && ! lsame_(uplo, "U")) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*nrhs < 0) { + *info = -4; + } else if (*ldb < max(1,*n)) { + *info = -7; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CPFTRS", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0 || *nrhs == 0) { + return 0; + } + +/* start execution: there are two triangular solves */ + + if (lower) { + ctfsm_(transr, "L", uplo, "N", "N", n, nrhs, &c_b1, a, &b[b_offset], + ldb); + ctfsm_(transr, "L", uplo, "C", "N", n, nrhs, &c_b1, a, &b[b_offset], + ldb); + } else { + ctfsm_(transr, "L", uplo, "C", "N", n, nrhs, &c_b1, a, &b[b_offset], + ldb); + ctfsm_(transr, "L", uplo, "N", "N", n, nrhs, &c_b1, a, &b[b_offset], + ldb); + } + + return 0; + +/* End of CPFTRS */ + +} /* cpftrs_ */ |