aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/cpftrs.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cpftrs.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cpftrs.c')
-rw-r--r--contrib/libs/clapack/cpftrs.c260
1 files changed, 260 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cpftrs.c b/contrib/libs/clapack/cpftrs.c
new file mode 100644
index 0000000000..7c42d2679e
--- /dev/null
+++ b/contrib/libs/clapack/cpftrs.c
@@ -0,0 +1,260 @@
+/* cpftrs.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static complex c_b1 = {1.f,0.f};
+
+/* Subroutine */ int cpftrs_(char *transr, char *uplo, integer *n, integer *
+ nrhs, complex *a, complex *b, integer *ldb, integer *info)
+{
+ /* System generated locals */
+ integer b_dim1, b_offset, i__1;
+
+ /* Local variables */
+ logical normaltransr;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int ctfsm_(char *, char *, char *, char *, char *,
+ integer *, integer *, complex *, complex *, complex *, integer *);
+ logical lower;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+
+/* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
+/* -- November 2008 -- */
+
+/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
+/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CPFTRS solves a system of linear equations A*X = B with a Hermitian */
+/* positive definite matrix A using the Cholesky factorization */
+/* A = U**H*U or A = L*L**H computed by CPFTRF. */
+
+/* Arguments */
+/* ========= */
+
+/* TRANSR (input) CHARACTER */
+/* = 'N': The Normal TRANSR of RFP A is stored; */
+/* = 'C': The Conjugate-transpose TRANSR of RFP A is stored. */
+
+/* UPLO (input) CHARACTER */
+/* = 'U': Upper triangle of RFP A is stored; */
+/* = 'L': Lower triangle of RFP A is stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* NRHS (input) INTEGER */
+/* The number of right hand sides, i.e., the number of columns */
+/* of the matrix B. NRHS >= 0. */
+
+/* A (input) COMPLEX array, dimension ( N*(N+1)/2 ); */
+/* The triangular factor U or L from the Cholesky factorization */
+/* of RFP A = U**H*U or RFP A = L*L**H, as computed by CPFTRF. */
+/* See note below for more details about RFP A. */
+
+/* B (input/output) COMPLEX array, dimension (LDB,NRHS) */
+/* On entry, the right hand side matrix B. */
+/* On exit, the solution matrix X. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+
+/* Note: */
+/* ===== */
+
+/* We first consider Standard Packed Format when N is even. */
+/* We give an example where N = 6. */
+
+/* AP is Upper AP is Lower */
+
+/* 00 01 02 03 04 05 00 */
+/* 11 12 13 14 15 10 11 */
+/* 22 23 24 25 20 21 22 */
+/* 33 34 35 30 31 32 33 */
+/* 44 45 40 41 42 43 44 */
+/* 55 50 51 52 53 54 55 */
+
+
+/* Let TRANSR = 'N'. RFP holds AP as follows: */
+/* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
+/* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
+/* conjugate-transpose of the first three columns of AP upper. */
+/* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
+/* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
+/* conjugate-transpose of the last three columns of AP lower. */
+/* To denote conjugate we place -- above the element. This covers the */
+/* case N even and TRANSR = 'N'. */
+
+/* RFP A RFP A */
+
+/* -- -- -- */
+/* 03 04 05 33 43 53 */
+/* -- -- */
+/* 13 14 15 00 44 54 */
+/* -- */
+/* 23 24 25 10 11 55 */
+
+/* 33 34 35 20 21 22 */
+/* -- */
+/* 00 44 45 30 31 32 */
+/* -- -- */
+/* 01 11 55 40 41 42 */
+/* -- -- -- */
+/* 02 12 22 50 51 52 */
+
+/* Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
+/* transpose of RFP A above. One therefore gets: */
+
+
+/* RFP A RFP A */
+
+/* -- -- -- -- -- -- -- -- -- -- */
+/* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
+/* -- -- -- -- -- -- -- -- -- -- */
+/* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
+/* -- -- -- -- -- -- -- -- -- -- */
+/* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
+
+
+/* We next consider Standard Packed Format when N is odd. */
+/* We give an example where N = 5. */
+
+/* AP is Upper AP is Lower */
+
+/* 00 01 02 03 04 00 */
+/* 11 12 13 14 10 11 */
+/* 22 23 24 20 21 22 */
+/* 33 34 30 31 32 33 */
+/* 44 40 41 42 43 44 */
+
+
+/* Let TRANSR = 'N'. RFP holds AP as follows: */
+/* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
+/* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
+/* conjugate-transpose of the first two columns of AP upper. */
+/* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
+/* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
+/* conjugate-transpose of the last two columns of AP lower. */
+/* To denote conjugate we place -- above the element. This covers the */
+/* case N odd and TRANSR = 'N'. */
+
+/* RFP A RFP A */
+
+/* -- -- */
+/* 02 03 04 00 33 43 */
+/* -- */
+/* 12 13 14 10 11 44 */
+
+/* 22 23 24 20 21 22 */
+/* -- */
+/* 00 33 34 30 31 32 */
+/* -- -- */
+/* 01 11 44 40 41 42 */
+
+/* Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
+/* transpose of RFP A above. One therefore gets: */
+
+
+/* RFP A RFP A */
+
+/* -- -- -- -- -- -- -- -- -- */
+/* 02 12 22 00 01 00 10 20 30 40 50 */
+/* -- -- -- -- -- -- -- -- -- */
+/* 03 13 23 33 11 33 11 21 31 41 51 */
+/* -- -- -- -- -- -- -- -- -- */
+/* 04 14 24 34 44 43 44 22 32 42 52 */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Function Body */
+ *info = 0;
+ normaltransr = lsame_(transr, "N");
+ lower = lsame_(uplo, "L");
+ if (! normaltransr && ! lsame_(transr, "C")) {
+ *info = -1;
+ } else if (! lower && ! lsame_(uplo, "U")) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*nrhs < 0) {
+ *info = -4;
+ } else if (*ldb < max(1,*n)) {
+ *info = -7;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CPFTRS", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0 || *nrhs == 0) {
+ return 0;
+ }
+
+/* start execution: there are two triangular solves */
+
+ if (lower) {
+ ctfsm_(transr, "L", uplo, "N", "N", n, nrhs, &c_b1, a, &b[b_offset],
+ ldb);
+ ctfsm_(transr, "L", uplo, "C", "N", n, nrhs, &c_b1, a, &b[b_offset],
+ ldb);
+ } else {
+ ctfsm_(transr, "L", uplo, "C", "N", n, nrhs, &c_b1, a, &b[b_offset],
+ ldb);
+ ctfsm_(transr, "L", uplo, "N", "N", n, nrhs, &c_b1, a, &b[b_offset],
+ ldb);
+ }
+
+ return 0;
+
+/* End of CPFTRS */
+
+} /* cpftrs_ */