aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/cpbtrs.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cpbtrs.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cpbtrs.c')
-rw-r--r--contrib/libs/clapack/cpbtrs.c184
1 files changed, 184 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cpbtrs.c b/contrib/libs/clapack/cpbtrs.c
new file mode 100644
index 0000000000..d325213c90
--- /dev/null
+++ b/contrib/libs/clapack/cpbtrs.c
@@ -0,0 +1,184 @@
+/* cpbtrs.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+
+/* Subroutine */ int cpbtrs_(char *uplo, integer *n, integer *kd, integer *
+ nrhs, complex *ab, integer *ldab, complex *b, integer *ldb, integer *
+ info)
+{
+ /* System generated locals */
+ integer ab_dim1, ab_offset, b_dim1, b_offset, i__1;
+
+ /* Local variables */
+ integer j;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int ctbsv_(char *, char *, char *, integer *,
+ integer *, complex *, integer *, complex *, integer *);
+ logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CPBTRS solves a system of linear equations A*X = B with a Hermitian */
+/* positive definite band matrix A using the Cholesky factorization */
+/* A = U**H*U or A = L*L**H computed by CPBTRF. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangular factor stored in AB; */
+/* = 'L': Lower triangular factor stored in AB. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* KD (input) INTEGER */
+/* The number of superdiagonals of the matrix A if UPLO = 'U', */
+/* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
+
+/* NRHS (input) INTEGER */
+/* The number of right hand sides, i.e., the number of columns */
+/* of the matrix B. NRHS >= 0. */
+
+/* AB (input) COMPLEX array, dimension (LDAB,N) */
+/* The triangular factor U or L from the Cholesky factorization */
+/* A = U**H*U or A = L*L**H of the band matrix A, stored in the */
+/* first KD+1 rows of the array. The j-th column of U or L is */
+/* stored in the j-th column of the array AB as follows: */
+/* if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; */
+/* if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd). */
+
+/* LDAB (input) INTEGER */
+/* The leading dimension of the array AB. LDAB >= KD+1. */
+
+/* B (input/output) COMPLEX array, dimension (LDB,NRHS) */
+/* On entry, the right hand side matrix B. */
+/* On exit, the solution matrix X. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+
+/* ===================================================================== */
+
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ ab_dim1 = *ldab;
+ ab_offset = 1 + ab_dim1;
+ ab -= ab_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*kd < 0) {
+ *info = -3;
+ } else if (*nrhs < 0) {
+ *info = -4;
+ } else if (*ldab < *kd + 1) {
+ *info = -6;
+ } else if (*ldb < max(1,*n)) {
+ *info = -8;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CPBTRS", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0 || *nrhs == 0) {
+ return 0;
+ }
+
+ if (upper) {
+
+/* Solve A*X = B where A = U'*U. */
+
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Solve U'*X = B, overwriting B with X. */
+
+ ctbsv_("Upper", "Conjugate transpose", "Non-unit", n, kd, &ab[
+ ab_offset], ldab, &b[j * b_dim1 + 1], &c__1);
+
+/* Solve U*X = B, overwriting B with X. */
+
+ ctbsv_("Upper", "No transpose", "Non-unit", n, kd, &ab[ab_offset],
+ ldab, &b[j * b_dim1 + 1], &c__1);
+/* L10: */
+ }
+ } else {
+
+/* Solve A*X = B where A = L*L'. */
+
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Solve L*X = B, overwriting B with X. */
+
+ ctbsv_("Lower", "No transpose", "Non-unit", n, kd, &ab[ab_offset],
+ ldab, &b[j * b_dim1 + 1], &c__1);
+
+/* Solve L'*X = B, overwriting B with X. */
+
+ ctbsv_("Lower", "Conjugate transpose", "Non-unit", n, kd, &ab[
+ ab_offset], ldab, &b[j * b_dim1 + 1], &c__1);
+/* L20: */
+ }
+ }
+
+ return 0;
+
+/* End of CPBTRS */
+
+} /* cpbtrs_ */