diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cpbtrs.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cpbtrs.c')
-rw-r--r-- | contrib/libs/clapack/cpbtrs.c | 184 |
1 files changed, 184 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cpbtrs.c b/contrib/libs/clapack/cpbtrs.c new file mode 100644 index 0000000000..d325213c90 --- /dev/null +++ b/contrib/libs/clapack/cpbtrs.c @@ -0,0 +1,184 @@ +/* cpbtrs.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; + +/* Subroutine */ int cpbtrs_(char *uplo, integer *n, integer *kd, integer * + nrhs, complex *ab, integer *ldab, complex *b, integer *ldb, integer * + info) +{ + /* System generated locals */ + integer ab_dim1, ab_offset, b_dim1, b_offset, i__1; + + /* Local variables */ + integer j; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int ctbsv_(char *, char *, char *, integer *, + integer *, complex *, integer *, complex *, integer *); + logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CPBTRS solves a system of linear equations A*X = B with a Hermitian */ +/* positive definite band matrix A using the Cholesky factorization */ +/* A = U**H*U or A = L*L**H computed by CPBTRF. */ + +/* Arguments */ +/* ========= */ + +/* UPLO (input) CHARACTER*1 */ +/* = 'U': Upper triangular factor stored in AB; */ +/* = 'L': Lower triangular factor stored in AB. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* KD (input) INTEGER */ +/* The number of superdiagonals of the matrix A if UPLO = 'U', */ +/* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */ + +/* NRHS (input) INTEGER */ +/* The number of right hand sides, i.e., the number of columns */ +/* of the matrix B. NRHS >= 0. */ + +/* AB (input) COMPLEX array, dimension (LDAB,N) */ +/* The triangular factor U or L from the Cholesky factorization */ +/* A = U**H*U or A = L*L**H of the band matrix A, stored in the */ +/* first KD+1 rows of the array. The j-th column of U or L is */ +/* stored in the j-th column of the array AB as follows: */ +/* if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; */ +/* if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd). */ + +/* LDAB (input) INTEGER */ +/* The leading dimension of the array AB. LDAB >= KD+1. */ + +/* B (input/output) COMPLEX array, dimension (LDB,NRHS) */ +/* On entry, the right hand side matrix B. */ +/* On exit, the solution matrix X. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,N). */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ + +/* ===================================================================== */ + +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + ab_dim1 = *ldab; + ab_offset = 1 + ab_dim1; + ab -= ab_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + if (! upper && ! lsame_(uplo, "L")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*kd < 0) { + *info = -3; + } else if (*nrhs < 0) { + *info = -4; + } else if (*ldab < *kd + 1) { + *info = -6; + } else if (*ldb < max(1,*n)) { + *info = -8; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CPBTRS", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0 || *nrhs == 0) { + return 0; + } + + if (upper) { + +/* Solve A*X = B where A = U'*U. */ + + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + +/* Solve U'*X = B, overwriting B with X. */ + + ctbsv_("Upper", "Conjugate transpose", "Non-unit", n, kd, &ab[ + ab_offset], ldab, &b[j * b_dim1 + 1], &c__1); + +/* Solve U*X = B, overwriting B with X. */ + + ctbsv_("Upper", "No transpose", "Non-unit", n, kd, &ab[ab_offset], + ldab, &b[j * b_dim1 + 1], &c__1); +/* L10: */ + } + } else { + +/* Solve A*X = B where A = L*L'. */ + + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + +/* Solve L*X = B, overwriting B with X. */ + + ctbsv_("Lower", "No transpose", "Non-unit", n, kd, &ab[ab_offset], + ldab, &b[j * b_dim1 + 1], &c__1); + +/* Solve L'*X = B, overwriting B with X. */ + + ctbsv_("Lower", "Conjugate transpose", "Non-unit", n, kd, &ab[ + ab_offset], ldab, &b[j * b_dim1 + 1], &c__1); +/* L20: */ + } + } + + return 0; + +/* End of CPBTRS */ + +} /* cpbtrs_ */ |