aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/cpbtf2.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cpbtf2.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cpbtf2.c')
-rw-r--r--contrib/libs/clapack/cpbtf2.c255
1 files changed, 255 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cpbtf2.c b/contrib/libs/clapack/cpbtf2.c
new file mode 100644
index 0000000000..eab52ff1aa
--- /dev/null
+++ b/contrib/libs/clapack/cpbtf2.c
@@ -0,0 +1,255 @@
+/* cpbtf2.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static real c_b8 = -1.f;
+static integer c__1 = 1;
+
+/* Subroutine */ int cpbtf2_(char *uplo, integer *n, integer *kd, complex *ab,
+ integer *ldab, integer *info)
+{
+ /* System generated locals */
+ integer ab_dim1, ab_offset, i__1, i__2, i__3;
+ real r__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer j, kn;
+ real ajj;
+ integer kld;
+ extern /* Subroutine */ int cher_(char *, integer *, real *, complex *,
+ integer *, complex *, integer *);
+ extern logical lsame_(char *, char *);
+ logical upper;
+ extern /* Subroutine */ int clacgv_(integer *, complex *, integer *),
+ csscal_(integer *, real *, complex *, integer *), xerbla_(char *,
+ integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CPBTF2 computes the Cholesky factorization of a complex Hermitian */
+/* positive definite band matrix A. */
+
+/* The factorization has the form */
+/* A = U' * U , if UPLO = 'U', or */
+/* A = L * L', if UPLO = 'L', */
+/* where U is an upper triangular matrix, U' is the conjugate transpose */
+/* of U, and L is lower triangular. */
+
+/* This is the unblocked version of the algorithm, calling Level 2 BLAS. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* Specifies whether the upper or lower triangular part of the */
+/* Hermitian matrix A is stored: */
+/* = 'U': Upper triangular */
+/* = 'L': Lower triangular */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* KD (input) INTEGER */
+/* The number of super-diagonals of the matrix A if UPLO = 'U', */
+/* or the number of sub-diagonals if UPLO = 'L'. KD >= 0. */
+
+/* AB (input/output) COMPLEX array, dimension (LDAB,N) */
+/* On entry, the upper or lower triangle of the Hermitian band */
+/* matrix A, stored in the first KD+1 rows of the array. The */
+/* j-th column of A is stored in the j-th column of the array AB */
+/* as follows: */
+/* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
+/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
+
+/* On exit, if INFO = 0, the triangular factor U or L from the */
+/* Cholesky factorization A = U'*U or A = L*L' of the band */
+/* matrix A, in the same storage format as A. */
+
+/* LDAB (input) INTEGER */
+/* The leading dimension of the array AB. LDAB >= KD+1. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -k, the k-th argument had an illegal value */
+/* > 0: if INFO = k, the leading minor of order k is not */
+/* positive definite, and the factorization could not be */
+/* completed. */
+
+/* Further Details */
+/* =============== */
+
+/* The band storage scheme is illustrated by the following example, when */
+/* N = 6, KD = 2, and UPLO = 'U': */
+
+/* On entry: On exit: */
+
+/* * * a13 a24 a35 a46 * * u13 u24 u35 u46 */
+/* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */
+/* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */
+
+/* Similarly, if UPLO = 'L' the format of A is as follows: */
+
+/* On entry: On exit: */
+
+/* a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 */
+/* a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * */
+/* a31 a42 a53 a64 * * l31 l42 l53 l64 * * */
+
+/* Array elements marked * are not used by the routine. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ ab_dim1 = *ldab;
+ ab_offset = 1 + ab_dim1;
+ ab -= ab_offset;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*kd < 0) {
+ *info = -3;
+ } else if (*ldab < *kd + 1) {
+ *info = -5;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CPBTF2", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Computing MAX */
+ i__1 = 1, i__2 = *ldab - 1;
+ kld = max(i__1,i__2);
+
+ if (upper) {
+
+/* Compute the Cholesky factorization A = U'*U. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Compute U(J,J) and test for non-positive-definiteness. */
+
+ i__2 = *kd + 1 + j * ab_dim1;
+ ajj = ab[i__2].r;
+ if (ajj <= 0.f) {
+ i__2 = *kd + 1 + j * ab_dim1;
+ ab[i__2].r = ajj, ab[i__2].i = 0.f;
+ goto L30;
+ }
+ ajj = sqrt(ajj);
+ i__2 = *kd + 1 + j * ab_dim1;
+ ab[i__2].r = ajj, ab[i__2].i = 0.f;
+
+/* Compute elements J+1:J+KN of row J and update the */
+/* trailing submatrix within the band. */
+
+/* Computing MIN */
+ i__2 = *kd, i__3 = *n - j;
+ kn = min(i__2,i__3);
+ if (kn > 0) {
+ r__1 = 1.f / ajj;
+ csscal_(&kn, &r__1, &ab[*kd + (j + 1) * ab_dim1], &kld);
+ clacgv_(&kn, &ab[*kd + (j + 1) * ab_dim1], &kld);
+ cher_("Upper", &kn, &c_b8, &ab[*kd + (j + 1) * ab_dim1], &kld,
+ &ab[*kd + 1 + (j + 1) * ab_dim1], &kld);
+ clacgv_(&kn, &ab[*kd + (j + 1) * ab_dim1], &kld);
+ }
+/* L10: */
+ }
+ } else {
+
+/* Compute the Cholesky factorization A = L*L'. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Compute L(J,J) and test for non-positive-definiteness. */
+
+ i__2 = j * ab_dim1 + 1;
+ ajj = ab[i__2].r;
+ if (ajj <= 0.f) {
+ i__2 = j * ab_dim1 + 1;
+ ab[i__2].r = ajj, ab[i__2].i = 0.f;
+ goto L30;
+ }
+ ajj = sqrt(ajj);
+ i__2 = j * ab_dim1 + 1;
+ ab[i__2].r = ajj, ab[i__2].i = 0.f;
+
+/* Compute elements J+1:J+KN of column J and update the */
+/* trailing submatrix within the band. */
+
+/* Computing MIN */
+ i__2 = *kd, i__3 = *n - j;
+ kn = min(i__2,i__3);
+ if (kn > 0) {
+ r__1 = 1.f / ajj;
+ csscal_(&kn, &r__1, &ab[j * ab_dim1 + 2], &c__1);
+ cher_("Lower", &kn, &c_b8, &ab[j * ab_dim1 + 2], &c__1, &ab[(
+ j + 1) * ab_dim1 + 1], &kld);
+ }
+/* L20: */
+ }
+ }
+ return 0;
+
+L30:
+ *info = j;
+ return 0;
+
+/* End of CPBTF2 */
+
+} /* cpbtf2_ */