aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/clascl.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/clascl.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/clascl.c')
-rw-r--r--contrib/libs/clapack/clascl.c377
1 files changed, 377 insertions, 0 deletions
diff --git a/contrib/libs/clapack/clascl.c b/contrib/libs/clapack/clascl.c
new file mode 100644
index 0000000000..ca01694ca5
--- /dev/null
+++ b/contrib/libs/clapack/clascl.c
@@ -0,0 +1,377 @@
+/* clascl.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int clascl_(char *type__, integer *kl, integer *ku, real *
+ cfrom, real *cto, integer *m, integer *n, complex *a, integer *lda,
+ integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ complex q__1;
+
+ /* Local variables */
+ integer i__, j, k1, k2, k3, k4;
+ real mul, cto1;
+ logical done;
+ real ctoc;
+ extern logical lsame_(char *, char *);
+ integer itype;
+ real cfrom1;
+ extern doublereal slamch_(char *);
+ real cfromc;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ real bignum;
+ extern logical sisnan_(real *);
+ real smlnum;
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CLASCL multiplies the M by N complex matrix A by the real scalar */
+/* CTO/CFROM. This is done without over/underflow as long as the final */
+/* result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that */
+/* A may be full, upper triangular, lower triangular, upper Hessenberg, */
+/* or banded. */
+
+/* Arguments */
+/* ========= */
+
+/* TYPE (input) CHARACTER*1 */
+/* TYPE indices the storage type of the input matrix. */
+/* = 'G': A is a full matrix. */
+/* = 'L': A is a lower triangular matrix. */
+/* = 'U': A is an upper triangular matrix. */
+/* = 'H': A is an upper Hessenberg matrix. */
+/* = 'B': A is a symmetric band matrix with lower bandwidth KL */
+/* and upper bandwidth KU and with the only the lower */
+/* half stored. */
+/* = 'Q': A is a symmetric band matrix with lower bandwidth KL */
+/* and upper bandwidth KU and with the only the upper */
+/* half stored. */
+/* = 'Z': A is a band matrix with lower bandwidth KL and upper */
+/* bandwidth KU. */
+
+/* KL (input) INTEGER */
+/* The lower bandwidth of A. Referenced only if TYPE = 'B', */
+/* 'Q' or 'Z'. */
+
+/* KU (input) INTEGER */
+/* The upper bandwidth of A. Referenced only if TYPE = 'B', */
+/* 'Q' or 'Z'. */
+
+/* CFROM (input) REAL */
+/* CTO (input) REAL */
+/* The matrix A is multiplied by CTO/CFROM. A(I,J) is computed */
+/* without over/underflow if the final result CTO*A(I,J)/CFROM */
+/* can be represented without over/underflow. CFROM must be */
+/* nonzero. */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix A. M >= 0. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrix A. N >= 0. */
+
+/* A (input/output) COMPLEX array, dimension (LDA,N) */
+/* The matrix to be multiplied by CTO/CFROM. See TYPE for the */
+/* storage type. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,M). */
+
+/* INFO (output) INTEGER */
+/* 0 - successful exit */
+/* <0 - if INFO = -i, the i-th argument had an illegal value. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input arguments */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+
+ /* Function Body */
+ *info = 0;
+
+ if (lsame_(type__, "G")) {
+ itype = 0;
+ } else if (lsame_(type__, "L")) {
+ itype = 1;
+ } else if (lsame_(type__, "U")) {
+ itype = 2;
+ } else if (lsame_(type__, "H")) {
+ itype = 3;
+ } else if (lsame_(type__, "B")) {
+ itype = 4;
+ } else if (lsame_(type__, "Q")) {
+ itype = 5;
+ } else if (lsame_(type__, "Z")) {
+ itype = 6;
+ } else {
+ itype = -1;
+ }
+
+ if (itype == -1) {
+ *info = -1;
+ } else if (*cfrom == 0.f || sisnan_(cfrom)) {
+ *info = -4;
+ } else if (sisnan_(cto)) {
+ *info = -5;
+ } else if (*m < 0) {
+ *info = -6;
+ } else if (*n < 0 || itype == 4 && *n != *m || itype == 5 && *n != *m) {
+ *info = -7;
+ } else if (itype <= 3 && *lda < max(1,*m)) {
+ *info = -9;
+ } else if (itype >= 4) {
+/* Computing MAX */
+ i__1 = *m - 1;
+ if (*kl < 0 || *kl > max(i__1,0)) {
+ *info = -2;
+ } else /* if(complicated condition) */ {
+/* Computing MAX */
+ i__1 = *n - 1;
+ if (*ku < 0 || *ku > max(i__1,0) || (itype == 4 || itype == 5) &&
+ *kl != *ku) {
+ *info = -3;
+ } else if (itype == 4 && *lda < *kl + 1 || itype == 5 && *lda < *
+ ku + 1 || itype == 6 && *lda < (*kl << 1) + *ku + 1) {
+ *info = -9;
+ }
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CLASCL", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0 || *m == 0) {
+ return 0;
+ }
+
+/* Get machine parameters */
+
+ smlnum = slamch_("S");
+ bignum = 1.f / smlnum;
+
+ cfromc = *cfrom;
+ ctoc = *cto;
+
+L10:
+ cfrom1 = cfromc * smlnum;
+ if (cfrom1 == cfromc) {
+/* CFROMC is an inf. Multiply by a correctly signed zero for */
+/* finite CTOC, or a NaN if CTOC is infinite. */
+ mul = ctoc / cfromc;
+ done = TRUE_;
+ cto1 = ctoc;
+ } else {
+ cto1 = ctoc / bignum;
+ if (cto1 == ctoc) {
+/* CTOC is either 0 or an inf. In both cases, CTOC itself */
+/* serves as the correct multiplication factor. */
+ mul = ctoc;
+ done = TRUE_;
+ cfromc = 1.f;
+ } else if (dabs(cfrom1) > dabs(ctoc) && ctoc != 0.f) {
+ mul = smlnum;
+ done = FALSE_;
+ cfromc = cfrom1;
+ } else if (dabs(cto1) > dabs(cfromc)) {
+ mul = bignum;
+ done = FALSE_;
+ ctoc = cto1;
+ } else {
+ mul = ctoc / cfromc;
+ done = TRUE_;
+ }
+ }
+
+ if (itype == 0) {
+
+/* Full matrix */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i;
+ a[i__3].r = q__1.r, a[i__3].i = q__1.i;
+/* L20: */
+ }
+/* L30: */
+ }
+
+ } else if (itype == 1) {
+
+/* Lower triangular matrix */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i;
+ a[i__3].r = q__1.r, a[i__3].i = q__1.i;
+/* L40: */
+ }
+/* L50: */
+ }
+
+ } else if (itype == 2) {
+
+/* Upper triangular matrix */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = min(j,*m);
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i;
+ a[i__3].r = q__1.r, a[i__3].i = q__1.i;
+/* L60: */
+ }
+/* L70: */
+ }
+
+ } else if (itype == 3) {
+
+/* Upper Hessenberg matrix */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MIN */
+ i__3 = j + 1;
+ i__2 = min(i__3,*m);
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i;
+ a[i__3].r = q__1.r, a[i__3].i = q__1.i;
+/* L80: */
+ }
+/* L90: */
+ }
+
+ } else if (itype == 4) {
+
+/* Lower half of a symmetric band matrix */
+
+ k3 = *kl + 1;
+ k4 = *n + 1;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MIN */
+ i__3 = k3, i__4 = k4 - j;
+ i__2 = min(i__3,i__4);
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i;
+ a[i__3].r = q__1.r, a[i__3].i = q__1.i;
+/* L100: */
+ }
+/* L110: */
+ }
+
+ } else if (itype == 5) {
+
+/* Upper half of a symmetric band matrix */
+
+ k1 = *ku + 2;
+ k3 = *ku + 1;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MAX */
+ i__2 = k1 - j;
+ i__3 = k3;
+ for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
+ i__2 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i;
+ a[i__2].r = q__1.r, a[i__2].i = q__1.i;
+/* L120: */
+ }
+/* L130: */
+ }
+
+ } else if (itype == 6) {
+
+/* Band matrix */
+
+ k1 = *kl + *ku + 2;
+ k2 = *kl + 1;
+ k3 = (*kl << 1) + *ku + 1;
+ k4 = *kl + *ku + 1 + *m;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MAX */
+ i__3 = k1 - j;
+/* Computing MIN */
+ i__4 = k3, i__5 = k4 - j;
+ i__2 = min(i__4,i__5);
+ for (i__ = max(i__3,k2); i__ <= i__2; ++i__) {
+ i__3 = i__ + j * a_dim1;
+ i__4 = i__ + j * a_dim1;
+ q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i;
+ a[i__3].r = q__1.r, a[i__3].i = q__1.i;
+/* L140: */
+ }
+/* L150: */
+ }
+
+ }
+
+ if (! done) {
+ goto L10;
+ }
+
+ return 0;
+
+/* End of CLASCL */
+
+} /* clascl_ */