aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/clarzb.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/clarzb.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/clarzb.c')
-rw-r--r--contrib/libs/clapack/clarzb.c323
1 files changed, 323 insertions, 0 deletions
diff --git a/contrib/libs/clapack/clarzb.c b/contrib/libs/clapack/clarzb.c
new file mode 100644
index 0000000000..8861dc6952
--- /dev/null
+++ b/contrib/libs/clapack/clarzb.c
@@ -0,0 +1,323 @@
+/* clarzb.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static complex c_b1 = {1.f,0.f};
+static integer c__1 = 1;
+
+/* Subroutine */ int clarzb_(char *side, char *trans, char *direct, char *
+ storev, integer *m, integer *n, integer *k, integer *l, complex *v,
+ integer *ldv, complex *t, integer *ldt, complex *c__, integer *ldc,
+ complex *work, integer *ldwork)
+{
+ /* System generated locals */
+ integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1,
+ work_offset, i__1, i__2, i__3, i__4, i__5;
+ complex q__1;
+
+ /* Local variables */
+ integer i__, j, info;
+ extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *,
+ integer *, complex *, complex *, integer *, complex *, integer *,
+ complex *, complex *, integer *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
+ complex *, integer *), ctrmm_(char *, char *, char *, char *,
+ integer *, integer *, complex *, complex *, integer *, complex *,
+ integer *), clacgv_(integer *,
+ complex *, integer *), xerbla_(char *, integer *);
+ char transt[1];
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CLARZB applies a complex block reflector H or its transpose H**H */
+/* to a complex distributed M-by-N C from the left or the right. */
+
+/* Currently, only STOREV = 'R' and DIRECT = 'B' are supported. */
+
+/* Arguments */
+/* ========= */
+
+/* SIDE (input) CHARACTER*1 */
+/* = 'L': apply H or H' from the Left */
+/* = 'R': apply H or H' from the Right */
+
+/* TRANS (input) CHARACTER*1 */
+/* = 'N': apply H (No transpose) */
+/* = 'C': apply H' (Conjugate transpose) */
+
+/* DIRECT (input) CHARACTER*1 */
+/* Indicates how H is formed from a product of elementary */
+/* reflectors */
+/* = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet) */
+/* = 'B': H = H(k) . . . H(2) H(1) (Backward) */
+
+/* STOREV (input) CHARACTER*1 */
+/* Indicates how the vectors which define the elementary */
+/* reflectors are stored: */
+/* = 'C': Columnwise (not supported yet) */
+/* = 'R': Rowwise */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix C. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrix C. */
+
+/* K (input) INTEGER */
+/* The order of the matrix T (= the number of elementary */
+/* reflectors whose product defines the block reflector). */
+
+/* L (input) INTEGER */
+/* The number of columns of the matrix V containing the */
+/* meaningful part of the Householder reflectors. */
+/* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. */
+
+/* V (input) COMPLEX array, dimension (LDV,NV). */
+/* If STOREV = 'C', NV = K; if STOREV = 'R', NV = L. */
+
+/* LDV (input) INTEGER */
+/* The leading dimension of the array V. */
+/* If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K. */
+
+/* T (input) COMPLEX array, dimension (LDT,K) */
+/* The triangular K-by-K matrix T in the representation of the */
+/* block reflector. */
+
+/* LDT (input) INTEGER */
+/* The leading dimension of the array T. LDT >= K. */
+
+/* C (input/output) COMPLEX array, dimension (LDC,N) */
+/* On entry, the M-by-N matrix C. */
+/* On exit, C is overwritten by H*C or H'*C or C*H or C*H'. */
+
+/* LDC (input) INTEGER */
+/* The leading dimension of the array C. LDC >= max(1,M). */
+
+/* WORK (workspace) COMPLEX array, dimension (LDWORK,K) */
+
+/* LDWORK (input) INTEGER */
+/* The leading dimension of the array WORK. */
+/* If SIDE = 'L', LDWORK >= max(1,N); */
+/* if SIDE = 'R', LDWORK >= max(1,M). */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Quick return if possible */
+
+ /* Parameter adjustments */
+ v_dim1 = *ldv;
+ v_offset = 1 + v_dim1;
+ v -= v_offset;
+ t_dim1 = *ldt;
+ t_offset = 1 + t_dim1;
+ t -= t_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+ work_dim1 = *ldwork;
+ work_offset = 1 + work_dim1;
+ work -= work_offset;
+
+ /* Function Body */
+ if (*m <= 0 || *n <= 0) {
+ return 0;
+ }
+
+/* Check for currently supported options */
+
+ info = 0;
+ if (! lsame_(direct, "B")) {
+ info = -3;
+ } else if (! lsame_(storev, "R")) {
+ info = -4;
+ }
+ if (info != 0) {
+ i__1 = -info;
+ xerbla_("CLARZB", &i__1);
+ return 0;
+ }
+
+ if (lsame_(trans, "N")) {
+ *(unsigned char *)transt = 'C';
+ } else {
+ *(unsigned char *)transt = 'N';
+ }
+
+ if (lsame_(side, "L")) {
+
+/* Form H * C or H' * C */
+
+/* W( 1:n, 1:k ) = conjg( C( 1:k, 1:n )' ) */
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ ccopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1], &c__1);
+/* L10: */
+ }
+
+/* W( 1:n, 1:k ) = W( 1:n, 1:k ) + ... */
+/* conjg( C( m-l+1:m, 1:n )' ) * V( 1:k, 1:l )' */
+
+ if (*l > 0) {
+ cgemm_("Transpose", "Conjugate transpose", n, k, l, &c_b1, &c__[*
+ m - *l + 1 + c_dim1], ldc, &v[v_offset], ldv, &c_b1, &
+ work[work_offset], ldwork);
+ }
+
+/* W( 1:n, 1:k ) = W( 1:n, 1:k ) * T' or W( 1:m, 1:k ) * T */
+
+ ctrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b1, &t[t_offset]
+, ldt, &work[work_offset], ldwork);
+
+/* C( 1:k, 1:n ) = C( 1:k, 1:n ) - conjg( W( 1:n, 1:k )' ) */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *k;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ i__5 = j + i__ * work_dim1;
+ q__1.r = c__[i__4].r - work[i__5].r, q__1.i = c__[i__4].i -
+ work[i__5].i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L20: */
+ }
+/* L30: */
+ }
+
+/* C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ... */
+/* conjg( V( 1:k, 1:l )' ) * conjg( W( 1:n, 1:k )' ) */
+
+ if (*l > 0) {
+ q__1.r = -1.f, q__1.i = -0.f;
+ cgemm_("Transpose", "Transpose", l, n, k, &q__1, &v[v_offset],
+ ldv, &work[work_offset], ldwork, &c_b1, &c__[*m - *l + 1
+ + c_dim1], ldc);
+ }
+
+ } else if (lsame_(side, "R")) {
+
+/* Form C * H or C * H' */
+
+/* W( 1:m, 1:k ) = C( 1:m, 1:k ) */
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ ccopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j * work_dim1 + 1], &
+ c__1);
+/* L40: */
+ }
+
+/* W( 1:m, 1:k ) = W( 1:m, 1:k ) + ... */
+/* C( 1:m, n-l+1:n ) * conjg( V( 1:k, 1:l )' ) */
+
+ if (*l > 0) {
+ cgemm_("No transpose", "Transpose", m, k, l, &c_b1, &c__[(*n - *l
+ + 1) * c_dim1 + 1], ldc, &v[v_offset], ldv, &c_b1, &work[
+ work_offset], ldwork);
+ }
+
+/* W( 1:m, 1:k ) = W( 1:m, 1:k ) * conjg( T ) or */
+/* W( 1:m, 1:k ) * conjg( T' ) */
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *k - j + 1;
+ clacgv_(&i__2, &t[j + j * t_dim1], &c__1);
+/* L50: */
+ }
+ ctrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b1, &t[t_offset],
+ ldt, &work[work_offset], ldwork);
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *k - j + 1;
+ clacgv_(&i__2, &t[j + j * t_dim1], &c__1);
+/* L60: */
+ }
+
+/* C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k ) */
+
+ i__1 = *k;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * work_dim1;
+ q__1.r = c__[i__4].r - work[i__5].r, q__1.i = c__[i__4].i -
+ work[i__5].i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L70: */
+ }
+/* L80: */
+ }
+
+/* C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ... */
+/* W( 1:m, 1:k ) * conjg( V( 1:k, 1:l ) ) */
+
+ i__1 = *l;
+ for (j = 1; j <= i__1; ++j) {
+ clacgv_(k, &v[j * v_dim1 + 1], &c__1);
+/* L90: */
+ }
+ if (*l > 0) {
+ q__1.r = -1.f, q__1.i = -0.f;
+ cgemm_("No transpose", "No transpose", m, l, k, &q__1, &work[
+ work_offset], ldwork, &v[v_offset], ldv, &c_b1, &c__[(*n
+ - *l + 1) * c_dim1 + 1], ldc);
+ }
+ i__1 = *l;
+ for (j = 1; j <= i__1; ++j) {
+ clacgv_(k, &v[j * v_dim1 + 1], &c__1);
+/* L100: */
+ }
+
+ }
+
+ return 0;
+
+/* End of CLARZB */
+
+} /* clarzb_ */