aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/clargv.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/clargv.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/clargv.c')
-rw-r--r--contrib/libs/clapack/clargv.c335
1 files changed, 335 insertions, 0 deletions
diff --git a/contrib/libs/clapack/clargv.c b/contrib/libs/clapack/clargv.c
new file mode 100644
index 0000000000..166806e001
--- /dev/null
+++ b/contrib/libs/clapack/clargv.c
@@ -0,0 +1,335 @@
+/* clargv.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int clargv_(integer *n, complex *x, integer *incx, complex *
+ y, integer *incy, real *c__, integer *incc)
+{
+ /* System generated locals */
+ integer i__1, i__2;
+ real r__1, r__2, r__3, r__4, r__5, r__6, r__7, r__8, r__9, r__10;
+ complex q__1, q__2, q__3;
+
+ /* Builtin functions */
+ double log(doublereal), pow_ri(real *, integer *), r_imag(complex *),
+ sqrt(doublereal);
+ void r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ real d__;
+ complex f, g;
+ integer i__, j;
+ complex r__;
+ real f2, g2;
+ integer ic;
+ real di;
+ complex ff;
+ real cs, dr;
+ complex fs, gs;
+ integer ix, iy;
+ complex sn;
+ real f2s, g2s, eps, scale;
+ integer count;
+ real safmn2, safmx2;
+ extern doublereal slapy2_(real *, real *), slamch_(char *);
+ real safmin;
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CLARGV generates a vector of complex plane rotations with real */
+/* cosines, determined by elements of the complex vectors x and y. */
+/* For i = 1,2,...,n */
+
+/* ( c(i) s(i) ) ( x(i) ) = ( r(i) ) */
+/* ( -conjg(s(i)) c(i) ) ( y(i) ) = ( 0 ) */
+
+/* where c(i)**2 + ABS(s(i))**2 = 1 */
+
+/* The following conventions are used (these are the same as in CLARTG, */
+/* but differ from the BLAS1 routine CROTG): */
+/* If y(i)=0, then c(i)=1 and s(i)=0. */
+/* If x(i)=0, then c(i)=0 and s(i) is chosen so that r(i) is real. */
+
+/* Arguments */
+/* ========= */
+
+/* N (input) INTEGER */
+/* The number of plane rotations to be generated. */
+
+/* X (input/output) COMPLEX array, dimension (1+(N-1)*INCX) */
+/* On entry, the vector x. */
+/* On exit, x(i) is overwritten by r(i), for i = 1,...,n. */
+
+/* INCX (input) INTEGER */
+/* The increment between elements of X. INCX > 0. */
+
+/* Y (input/output) COMPLEX array, dimension (1+(N-1)*INCY) */
+/* On entry, the vector y. */
+/* On exit, the sines of the plane rotations. */
+
+/* INCY (input) INTEGER */
+/* The increment between elements of Y. INCY > 0. */
+
+/* C (output) REAL array, dimension (1+(N-1)*INCC) */
+/* The cosines of the plane rotations. */
+
+/* INCC (input) INTEGER */
+/* The increment between elements of C. INCC > 0. */
+
+/* Further Details */
+/* ======= ======= */
+
+/* 6-6-96 - Modified with a new algorithm by W. Kahan and J. Demmel */
+
+/* This version has a few statements commented out for thread safety */
+/* (machine parameters are computed on each entry). 10 feb 03, SJH. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* LOGICAL FIRST */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Statement Functions .. */
+/* .. */
+/* .. Save statement .. */
+/* SAVE FIRST, SAFMX2, SAFMIN, SAFMN2 */
+/* .. */
+/* .. Data statements .. */
+/* DATA FIRST / .TRUE. / */
+/* .. */
+/* .. Statement Function definitions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* IF( FIRST ) THEN */
+/* FIRST = .FALSE. */
+ /* Parameter adjustments */
+ --c__;
+ --y;
+ --x;
+
+ /* Function Body */
+ safmin = slamch_("S");
+ eps = slamch_("E");
+ r__1 = slamch_("B");
+ i__1 = (integer) (log(safmin / eps) / log(slamch_("B")) / 2.f);
+ safmn2 = pow_ri(&r__1, &i__1);
+ safmx2 = 1.f / safmn2;
+/* END IF */
+ ix = 1;
+ iy = 1;
+ ic = 1;
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = ix;
+ f.r = x[i__2].r, f.i = x[i__2].i;
+ i__2 = iy;
+ g.r = y[i__2].r, g.i = y[i__2].i;
+
+/* Use identical algorithm as in CLARTG */
+
+/* Computing MAX */
+/* Computing MAX */
+ r__7 = (r__1 = f.r, dabs(r__1)), r__8 = (r__2 = r_imag(&f), dabs(r__2)
+ );
+/* Computing MAX */
+ r__9 = (r__3 = g.r, dabs(r__3)), r__10 = (r__4 = r_imag(&g), dabs(
+ r__4));
+ r__5 = dmax(r__7,r__8), r__6 = dmax(r__9,r__10);
+ scale = dmax(r__5,r__6);
+ fs.r = f.r, fs.i = f.i;
+ gs.r = g.r, gs.i = g.i;
+ count = 0;
+ if (scale >= safmx2) {
+L10:
+ ++count;
+ q__1.r = safmn2 * fs.r, q__1.i = safmn2 * fs.i;
+ fs.r = q__1.r, fs.i = q__1.i;
+ q__1.r = safmn2 * gs.r, q__1.i = safmn2 * gs.i;
+ gs.r = q__1.r, gs.i = q__1.i;
+ scale *= safmn2;
+ if (scale >= safmx2) {
+ goto L10;
+ }
+ } else if (scale <= safmn2) {
+ if (g.r == 0.f && g.i == 0.f) {
+ cs = 1.f;
+ sn.r = 0.f, sn.i = 0.f;
+ r__.r = f.r, r__.i = f.i;
+ goto L50;
+ }
+L20:
+ --count;
+ q__1.r = safmx2 * fs.r, q__1.i = safmx2 * fs.i;
+ fs.r = q__1.r, fs.i = q__1.i;
+ q__1.r = safmx2 * gs.r, q__1.i = safmx2 * gs.i;
+ gs.r = q__1.r, gs.i = q__1.i;
+ scale *= safmx2;
+ if (scale <= safmn2) {
+ goto L20;
+ }
+ }
+/* Computing 2nd power */
+ r__1 = fs.r;
+/* Computing 2nd power */
+ r__2 = r_imag(&fs);
+ f2 = r__1 * r__1 + r__2 * r__2;
+/* Computing 2nd power */
+ r__1 = gs.r;
+/* Computing 2nd power */
+ r__2 = r_imag(&gs);
+ g2 = r__1 * r__1 + r__2 * r__2;
+ if (f2 <= dmax(g2,1.f) * safmin) {
+
+/* This is a rare case: F is very small. */
+
+ if (f.r == 0.f && f.i == 0.f) {
+ cs = 0.f;
+ r__2 = g.r;
+ r__3 = r_imag(&g);
+ r__1 = slapy2_(&r__2, &r__3);
+ r__.r = r__1, r__.i = 0.f;
+/* Do complex/real division explicitly with two real */
+/* divisions */
+ r__1 = gs.r;
+ r__2 = r_imag(&gs);
+ d__ = slapy2_(&r__1, &r__2);
+ r__1 = gs.r / d__;
+ r__2 = -r_imag(&gs) / d__;
+ q__1.r = r__1, q__1.i = r__2;
+ sn.r = q__1.r, sn.i = q__1.i;
+ goto L50;
+ }
+ r__1 = fs.r;
+ r__2 = r_imag(&fs);
+ f2s = slapy2_(&r__1, &r__2);
+/* G2 and G2S are accurate */
+/* G2 is at least SAFMIN, and G2S is at least SAFMN2 */
+ g2s = sqrt(g2);
+/* Error in CS from underflow in F2S is at most */
+/* UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS */
+/* If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN, */
+/* and so CS .lt. sqrt(SAFMIN) */
+/* If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN */
+/* and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS) */
+/* Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S */
+ cs = f2s / g2s;
+/* Make sure abs(FF) = 1 */
+/* Do complex/real division explicitly with 2 real divisions */
+/* Computing MAX */
+ r__3 = (r__1 = f.r, dabs(r__1)), r__4 = (r__2 = r_imag(&f), dabs(
+ r__2));
+ if (dmax(r__3,r__4) > 1.f) {
+ r__1 = f.r;
+ r__2 = r_imag(&f);
+ d__ = slapy2_(&r__1, &r__2);
+ r__1 = f.r / d__;
+ r__2 = r_imag(&f) / d__;
+ q__1.r = r__1, q__1.i = r__2;
+ ff.r = q__1.r, ff.i = q__1.i;
+ } else {
+ dr = safmx2 * f.r;
+ di = safmx2 * r_imag(&f);
+ d__ = slapy2_(&dr, &di);
+ r__1 = dr / d__;
+ r__2 = di / d__;
+ q__1.r = r__1, q__1.i = r__2;
+ ff.r = q__1.r, ff.i = q__1.i;
+ }
+ r__1 = gs.r / g2s;
+ r__2 = -r_imag(&gs) / g2s;
+ q__2.r = r__1, q__2.i = r__2;
+ q__1.r = ff.r * q__2.r - ff.i * q__2.i, q__1.i = ff.r * q__2.i +
+ ff.i * q__2.r;
+ sn.r = q__1.r, sn.i = q__1.i;
+ q__2.r = cs * f.r, q__2.i = cs * f.i;
+ q__3.r = sn.r * g.r - sn.i * g.i, q__3.i = sn.r * g.i + sn.i *
+ g.r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ r__.r = q__1.r, r__.i = q__1.i;
+ } else {
+
+/* This is the most common case. */
+/* Neither F2 nor F2/G2 are less than SAFMIN */
+/* F2S cannot overflow, and it is accurate */
+
+ f2s = sqrt(g2 / f2 + 1.f);
+/* Do the F2S(real)*FS(complex) multiply with two real */
+/* multiplies */
+ r__1 = f2s * fs.r;
+ r__2 = f2s * r_imag(&fs);
+ q__1.r = r__1, q__1.i = r__2;
+ r__.r = q__1.r, r__.i = q__1.i;
+ cs = 1.f / f2s;
+ d__ = f2 + g2;
+/* Do complex/real division explicitly with two real divisions */
+ r__1 = r__.r / d__;
+ r__2 = r_imag(&r__) / d__;
+ q__1.r = r__1, q__1.i = r__2;
+ sn.r = q__1.r, sn.i = q__1.i;
+ r_cnjg(&q__2, &gs);
+ q__1.r = sn.r * q__2.r - sn.i * q__2.i, q__1.i = sn.r * q__2.i +
+ sn.i * q__2.r;
+ sn.r = q__1.r, sn.i = q__1.i;
+ if (count != 0) {
+ if (count > 0) {
+ i__2 = count;
+ for (j = 1; j <= i__2; ++j) {
+ q__1.r = safmx2 * r__.r, q__1.i = safmx2 * r__.i;
+ r__.r = q__1.r, r__.i = q__1.i;
+/* L30: */
+ }
+ } else {
+ i__2 = -count;
+ for (j = 1; j <= i__2; ++j) {
+ q__1.r = safmn2 * r__.r, q__1.i = safmn2 * r__.i;
+ r__.r = q__1.r, r__.i = q__1.i;
+/* L40: */
+ }
+ }
+ }
+ }
+L50:
+ c__[ic] = cs;
+ i__2 = iy;
+ y[i__2].r = sn.r, y[i__2].i = sn.i;
+ i__2 = ix;
+ x[i__2].r = r__.r, x[i__2].i = r__.i;
+ ic += *incc;
+ iy += *incy;
+ ix += *incx;
+/* L60: */
+ }
+ return 0;
+
+/* End of CLARGV */
+
+} /* clargv_ */