aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/claqr3.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/claqr3.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/claqr3.c')
-rw-r--r--contrib/libs/clapack/claqr3.c620
1 files changed, 620 insertions, 0 deletions
diff --git a/contrib/libs/clapack/claqr3.c b/contrib/libs/clapack/claqr3.c
new file mode 100644
index 0000000000..0a3044a5cc
--- /dev/null
+++ b/contrib/libs/clapack/claqr3.c
@@ -0,0 +1,620 @@
+/* claqr3.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static complex c_b1 = {0.f,0.f};
+static complex c_b2 = {1.f,0.f};
+static integer c__1 = 1;
+static integer c_n1 = -1;
+static logical c_true = TRUE_;
+static integer c__12 = 12;
+
+/* Subroutine */ int claqr3_(logical *wantt, logical *wantz, integer *n,
+ integer *ktop, integer *kbot, integer *nw, complex *h__, integer *ldh,
+ integer *iloz, integer *ihiz, complex *z__, integer *ldz, integer *
+ ns, integer *nd, complex *sh, complex *v, integer *ldv, integer *nh,
+ complex *t, integer *ldt, integer *nv, complex *wv, integer *ldwv,
+ complex *work, integer *lwork)
+{
+ /* System generated locals */
+ integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1,
+ wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
+ real r__1, r__2, r__3, r__4, r__5, r__6;
+ complex q__1, q__2;
+
+ /* Builtin functions */
+ double r_imag(complex *);
+ void r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ integer i__, j;
+ complex s;
+ integer jw;
+ real foo;
+ integer kln;
+ complex tau;
+ integer knt;
+ real ulp;
+ integer lwk1, lwk2, lwk3;
+ complex beta;
+ integer kcol, info, nmin, ifst, ilst, ltop, krow;
+ extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex *
+, integer *, complex *, complex *, integer *, complex *),
+ cgemm_(char *, char *, integer *, integer *, integer *, complex *,
+ complex *, integer *, complex *, integer *, complex *, complex *,
+ integer *), ccopy_(integer *, complex *, integer
+ *, complex *, integer *);
+ integer infqr, kwtop;
+ extern /* Subroutine */ int claqr4_(logical *, logical *, integer *,
+ integer *, integer *, complex *, integer *, complex *, integer *,
+ integer *, complex *, integer *, complex *, integer *, integer *),
+ slabad_(real *, real *), cgehrd_(integer *, integer *, integer *,
+ complex *, integer *, complex *, complex *, integer *, integer *)
+ , clarfg_(integer *, complex *, complex *, integer *, complex *);
+ extern doublereal slamch_(char *);
+ extern /* Subroutine */ int clahqr_(logical *, logical *, integer *,
+ integer *, integer *, complex *, integer *, complex *, integer *,
+ integer *, complex *, integer *, integer *), clacpy_(char *,
+ integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex
+ *, complex *, integer *);
+ real safmin;
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ real safmax;
+ extern /* Subroutine */ int ctrexc_(char *, integer *, complex *, integer
+ *, complex *, integer *, integer *, integer *, integer *),
+ cunmhr_(char *, char *, integer *, integer *, integer *, integer
+ *, complex *, integer *, complex *, complex *, integer *, complex
+ *, integer *, integer *);
+ real smlnum;
+ integer lwkopt;
+
+
+/* -- LAPACK auxiliary routine (version 3.2.1) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. */
+/* -- April 2009 -- */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* ****************************************************************** */
+/* Aggressive early deflation: */
+
+/* This subroutine accepts as input an upper Hessenberg matrix */
+/* H and performs an unitary similarity transformation */
+/* designed to detect and deflate fully converged eigenvalues from */
+/* a trailing principal submatrix. On output H has been over- */
+/* written by a new Hessenberg matrix that is a perturbation of */
+/* an unitary similarity transformation of H. It is to be */
+/* hoped that the final version of H has many zero subdiagonal */
+/* entries. */
+
+/* ****************************************************************** */
+/* WANTT (input) LOGICAL */
+/* If .TRUE., then the Hessenberg matrix H is fully updated */
+/* so that the triangular Schur factor may be */
+/* computed (in cooperation with the calling subroutine). */
+/* If .FALSE., then only enough of H is updated to preserve */
+/* the eigenvalues. */
+
+/* WANTZ (input) LOGICAL */
+/* If .TRUE., then the unitary matrix Z is updated so */
+/* so that the unitary Schur factor may be computed */
+/* (in cooperation with the calling subroutine). */
+/* If .FALSE., then Z is not referenced. */
+
+/* N (input) INTEGER */
+/* The order of the matrix H and (if WANTZ is .TRUE.) the */
+/* order of the unitary matrix Z. */
+
+/* KTOP (input) INTEGER */
+/* It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. */
+/* KBOT and KTOP together determine an isolated block */
+/* along the diagonal of the Hessenberg matrix. */
+
+/* KBOT (input) INTEGER */
+/* It is assumed without a check that either */
+/* KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together */
+/* determine an isolated block along the diagonal of the */
+/* Hessenberg matrix. */
+
+/* NW (input) INTEGER */
+/* Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1). */
+
+/* H (input/output) COMPLEX array, dimension (LDH,N) */
+/* On input the initial N-by-N section of H stores the */
+/* Hessenberg matrix undergoing aggressive early deflation. */
+/* On output H has been transformed by a unitary */
+/* similarity transformation, perturbed, and the returned */
+/* to Hessenberg form that (it is to be hoped) has some */
+/* zero subdiagonal entries. */
+
+/* LDH (input) integer */
+/* Leading dimension of H just as declared in the calling */
+/* subroutine. N .LE. LDH */
+
+/* ILOZ (input) INTEGER */
+/* IHIZ (input) INTEGER */
+/* Specify the rows of Z to which transformations must be */
+/* applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N. */
+
+/* Z (input/output) COMPLEX array, dimension (LDZ,N) */
+/* IF WANTZ is .TRUE., then on output, the unitary */
+/* similarity transformation mentioned above has been */
+/* accumulated into Z(ILOZ:IHIZ,ILO:IHI) from the right. */
+/* If WANTZ is .FALSE., then Z is unreferenced. */
+
+/* LDZ (input) integer */
+/* The leading dimension of Z just as declared in the */
+/* calling subroutine. 1 .LE. LDZ. */
+
+/* NS (output) integer */
+/* The number of unconverged (ie approximate) eigenvalues */
+/* returned in SR and SI that may be used as shifts by the */
+/* calling subroutine. */
+
+/* ND (output) integer */
+/* The number of converged eigenvalues uncovered by this */
+/* subroutine. */
+
+/* SH (output) COMPLEX array, dimension KBOT */
+/* On output, approximate eigenvalues that may */
+/* be used for shifts are stored in SH(KBOT-ND-NS+1) */
+/* through SR(KBOT-ND). Converged eigenvalues are */
+/* stored in SH(KBOT-ND+1) through SH(KBOT). */
+
+/* V (workspace) COMPLEX array, dimension (LDV,NW) */
+/* An NW-by-NW work array. */
+
+/* LDV (input) integer scalar */
+/* The leading dimension of V just as declared in the */
+/* calling subroutine. NW .LE. LDV */
+
+/* NH (input) integer scalar */
+/* The number of columns of T. NH.GE.NW. */
+
+/* T (workspace) COMPLEX array, dimension (LDT,NW) */
+
+/* LDT (input) integer */
+/* The leading dimension of T just as declared in the */
+/* calling subroutine. NW .LE. LDT */
+
+/* NV (input) integer */
+/* The number of rows of work array WV available for */
+/* workspace. NV.GE.NW. */
+
+/* WV (workspace) COMPLEX array, dimension (LDWV,NW) */
+
+/* LDWV (input) integer */
+/* The leading dimension of W just as declared in the */
+/* calling subroutine. NW .LE. LDV */
+
+/* WORK (workspace) COMPLEX array, dimension LWORK. */
+/* On exit, WORK(1) is set to an estimate of the optimal value */
+/* of LWORK for the given values of N, NW, KTOP and KBOT. */
+
+/* LWORK (input) integer */
+/* The dimension of the work array WORK. LWORK = 2*NW */
+/* suffices, but greater efficiency may result from larger */
+/* values of LWORK. */
+
+/* If LWORK = -1, then a workspace query is assumed; CLAQR3 */
+/* only estimates the optimal workspace size for the given */
+/* values of N, NW, KTOP and KBOT. The estimate is returned */
+/* in WORK(1). No error message related to LWORK is issued */
+/* by XERBLA. Neither H nor Z are accessed. */
+
+/* ================================================================ */
+/* Based on contributions by */
+/* Karen Braman and Ralph Byers, Department of Mathematics, */
+/* University of Kansas, USA */
+
+/* ================================================================ */
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Statement Functions .. */
+/* .. */
+/* .. Statement Function definitions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* ==== Estimate optimal workspace. ==== */
+
+ /* Parameter adjustments */
+ h_dim1 = *ldh;
+ h_offset = 1 + h_dim1;
+ h__ -= h_offset;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+ --sh;
+ v_dim1 = *ldv;
+ v_offset = 1 + v_dim1;
+ v -= v_offset;
+ t_dim1 = *ldt;
+ t_offset = 1 + t_dim1;
+ t -= t_offset;
+ wv_dim1 = *ldwv;
+ wv_offset = 1 + wv_dim1;
+ wv -= wv_offset;
+ --work;
+
+ /* Function Body */
+/* Computing MIN */
+ i__1 = *nw, i__2 = *kbot - *ktop + 1;
+ jw = min(i__1,i__2);
+ if (jw <= 2) {
+ lwkopt = 1;
+ } else {
+
+/* ==== Workspace query call to CGEHRD ==== */
+
+ i__1 = jw - 1;
+ cgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], &
+ c_n1, &info);
+ lwk1 = (integer) work[1].r;
+
+/* ==== Workspace query call to CUNMHR ==== */
+
+ i__1 = jw - 1;
+ cunmhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1],
+ &v[v_offset], ldv, &work[1], &c_n1, &info);
+ lwk2 = (integer) work[1].r;
+
+/* ==== Workspace query call to CLAQR4 ==== */
+
+ claqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sh[1],
+ &c__1, &jw, &v[v_offset], ldv, &work[1], &c_n1, &infqr);
+ lwk3 = (integer) work[1].r;
+
+/* ==== Optimal workspace ==== */
+
+/* Computing MAX */
+ i__1 = jw + max(lwk1,lwk2);
+ lwkopt = max(i__1,lwk3);
+ }
+
+/* ==== Quick return in case of workspace query. ==== */
+
+ if (*lwork == -1) {
+ r__1 = (real) lwkopt;
+ q__1.r = r__1, q__1.i = 0.f;
+ work[1].r = q__1.r, work[1].i = q__1.i;
+ return 0;
+ }
+
+/* ==== Nothing to do ... */
+/* ... for an empty active block ... ==== */
+ *ns = 0;
+ *nd = 0;
+ work[1].r = 1.f, work[1].i = 0.f;
+ if (*ktop > *kbot) {
+ return 0;
+ }
+/* ... nor for an empty deflation window. ==== */
+ if (*nw < 1) {
+ return 0;
+ }
+
+/* ==== Machine constants ==== */
+
+ safmin = slamch_("SAFE MINIMUM");
+ safmax = 1.f / safmin;
+ slabad_(&safmin, &safmax);
+ ulp = slamch_("PRECISION");
+ smlnum = safmin * ((real) (*n) / ulp);
+
+/* ==== Setup deflation window ==== */
+
+/* Computing MIN */
+ i__1 = *nw, i__2 = *kbot - *ktop + 1;
+ jw = min(i__1,i__2);
+ kwtop = *kbot - jw + 1;
+ if (kwtop == *ktop) {
+ s.r = 0.f, s.i = 0.f;
+ } else {
+ i__1 = kwtop + (kwtop - 1) * h_dim1;
+ s.r = h__[i__1].r, s.i = h__[i__1].i;
+ }
+
+ if (*kbot == kwtop) {
+
+/* ==== 1-by-1 deflation window: not much to do ==== */
+
+ i__1 = kwtop;
+ i__2 = kwtop + kwtop * h_dim1;
+ sh[i__1].r = h__[i__2].r, sh[i__1].i = h__[i__2].i;
+ *ns = 1;
+ *nd = 0;
+/* Computing MAX */
+ i__1 = kwtop + kwtop * h_dim1;
+ r__5 = smlnum, r__6 = ulp * ((r__1 = h__[i__1].r, dabs(r__1)) + (r__2
+ = r_imag(&h__[kwtop + kwtop * h_dim1]), dabs(r__2)));
+ if ((r__3 = s.r, dabs(r__3)) + (r__4 = r_imag(&s), dabs(r__4)) <=
+ dmax(r__5,r__6)) {
+ *ns = 0;
+ *nd = 1;
+ if (kwtop > *ktop) {
+ i__1 = kwtop + (kwtop - 1) * h_dim1;
+ h__[i__1].r = 0.f, h__[i__1].i = 0.f;
+ }
+ }
+ work[1].r = 1.f, work[1].i = 0.f;
+ return 0;
+ }
+
+/* ==== Convert to spike-triangular form. (In case of a */
+/* . rare QR failure, this routine continues to do */
+/* . aggressive early deflation using that part of */
+/* . the deflation window that converged using INFQR */
+/* . here and there to keep track.) ==== */
+
+ clacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset],
+ ldt);
+ i__1 = jw - 1;
+ i__2 = *ldh + 1;
+ i__3 = *ldt + 1;
+ ccopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], &
+ i__3);
+
+ claset_("A", &jw, &jw, &c_b1, &c_b2, &v[v_offset], ldv);
+ nmin = ilaenv_(&c__12, "CLAQR3", "SV", &jw, &c__1, &jw, lwork);
+ if (jw > nmin) {
+ claqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sh[
+ kwtop], &c__1, &jw, &v[v_offset], ldv, &work[1], lwork, &
+ infqr);
+ } else {
+ clahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sh[
+ kwtop], &c__1, &jw, &v[v_offset], ldv, &infqr);
+ }
+
+/* ==== Deflation detection loop ==== */
+
+ *ns = jw;
+ ilst = infqr + 1;
+ i__1 = jw;
+ for (knt = infqr + 1; knt <= i__1; ++knt) {
+
+/* ==== Small spike tip deflation test ==== */
+
+ i__2 = *ns + *ns * t_dim1;
+ foo = (r__1 = t[i__2].r, dabs(r__1)) + (r__2 = r_imag(&t[*ns + *ns *
+ t_dim1]), dabs(r__2));
+ if (foo == 0.f) {
+ foo = (r__1 = s.r, dabs(r__1)) + (r__2 = r_imag(&s), dabs(r__2));
+ }
+ i__2 = *ns * v_dim1 + 1;
+/* Computing MAX */
+ r__5 = smlnum, r__6 = ulp * foo;
+ if (((r__1 = s.r, dabs(r__1)) + (r__2 = r_imag(&s), dabs(r__2))) * ((
+ r__3 = v[i__2].r, dabs(r__3)) + (r__4 = r_imag(&v[*ns *
+ v_dim1 + 1]), dabs(r__4))) <= dmax(r__5,r__6)) {
+
+/* ==== One more converged eigenvalue ==== */
+
+ --(*ns);
+ } else {
+
+/* ==== One undeflatable eigenvalue. Move it up out of the */
+/* . way. (CTREXC can not fail in this case.) ==== */
+
+ ifst = *ns;
+ ctrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, &
+ ilst, &info);
+ ++ilst;
+ }
+/* L10: */
+ }
+
+/* ==== Return to Hessenberg form ==== */
+
+ if (*ns == 0) {
+ s.r = 0.f, s.i = 0.f;
+ }
+
+ if (*ns < jw) {
+
+/* ==== sorting the diagonal of T improves accuracy for */
+/* . graded matrices. ==== */
+
+ i__1 = *ns;
+ for (i__ = infqr + 1; i__ <= i__1; ++i__) {
+ ifst = i__;
+ i__2 = *ns;
+ for (j = i__ + 1; j <= i__2; ++j) {
+ i__3 = j + j * t_dim1;
+ i__4 = ifst + ifst * t_dim1;
+ if ((r__1 = t[i__3].r, dabs(r__1)) + (r__2 = r_imag(&t[j + j *
+ t_dim1]), dabs(r__2)) > (r__3 = t[i__4].r, dabs(r__3)
+ ) + (r__4 = r_imag(&t[ifst + ifst * t_dim1]), dabs(
+ r__4))) {
+ ifst = j;
+ }
+/* L20: */
+ }
+ ilst = i__;
+ if (ifst != ilst) {
+ ctrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
+ &ilst, &info);
+ }
+/* L30: */
+ }
+ }
+
+/* ==== Restore shift/eigenvalue array from T ==== */
+
+ i__1 = jw;
+ for (i__ = infqr + 1; i__ <= i__1; ++i__) {
+ i__2 = kwtop + i__ - 1;
+ i__3 = i__ + i__ * t_dim1;
+ sh[i__2].r = t[i__3].r, sh[i__2].i = t[i__3].i;
+/* L40: */
+ }
+
+
+ if (*ns < jw || s.r == 0.f && s.i == 0.f) {
+ if (*ns > 1 && (s.r != 0.f || s.i != 0.f)) {
+
+/* ==== Reflect spike back into lower triangle ==== */
+
+ ccopy_(ns, &v[v_offset], ldv, &work[1], &c__1);
+ i__1 = *ns;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ r_cnjg(&q__1, &work[i__]);
+ work[i__2].r = q__1.r, work[i__2].i = q__1.i;
+/* L50: */
+ }
+ beta.r = work[1].r, beta.i = work[1].i;
+ clarfg_(ns, &beta, &work[2], &c__1, &tau);
+ work[1].r = 1.f, work[1].i = 0.f;
+
+ i__1 = jw - 2;
+ i__2 = jw - 2;
+ claset_("L", &i__1, &i__2, &c_b1, &c_b1, &t[t_dim1 + 3], ldt);
+
+ r_cnjg(&q__1, &tau);
+ clarf_("L", ns, &jw, &work[1], &c__1, &q__1, &t[t_offset], ldt, &
+ work[jw + 1]);
+ clarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, &
+ work[jw + 1]);
+ clarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, &
+ work[jw + 1]);
+
+ i__1 = *lwork - jw;
+ cgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1]
+, &i__1, &info);
+ }
+
+/* ==== Copy updated reduced window into place ==== */
+
+ if (kwtop > 1) {
+ i__1 = kwtop + (kwtop - 1) * h_dim1;
+ r_cnjg(&q__2, &v[v_dim1 + 1]);
+ q__1.r = s.r * q__2.r - s.i * q__2.i, q__1.i = s.r * q__2.i + s.i
+ * q__2.r;
+ h__[i__1].r = q__1.r, h__[i__1].i = q__1.i;
+ }
+ clacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1]
+, ldh);
+ i__1 = jw - 1;
+ i__2 = *ldt + 1;
+ i__3 = *ldh + 1;
+ ccopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1],
+ &i__3);
+
+/* ==== Accumulate orthogonal matrix in order update */
+/* . H and Z, if requested. ==== */
+
+ if (*ns > 1 && (s.r != 0.f || s.i != 0.f)) {
+ i__1 = *lwork - jw;
+ cunmhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1],
+ &v[v_offset], ldv, &work[jw + 1], &i__1, &info);
+ }
+
+/* ==== Update vertical slab in H ==== */
+
+ if (*wantt) {
+ ltop = 1;
+ } else {
+ ltop = *ktop;
+ }
+ i__1 = kwtop - 1;
+ i__2 = *nv;
+ for (krow = ltop; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
+ i__2) {
+/* Computing MIN */
+ i__3 = *nv, i__4 = kwtop - krow;
+ kln = min(i__3,i__4);
+ cgemm_("N", "N", &kln, &jw, &jw, &c_b2, &h__[krow + kwtop *
+ h_dim1], ldh, &v[v_offset], ldv, &c_b1, &wv[wv_offset],
+ ldwv);
+ clacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop *
+ h_dim1], ldh);
+/* L60: */
+ }
+
+/* ==== Update horizontal slab in H ==== */
+
+ if (*wantt) {
+ i__2 = *n;
+ i__1 = *nh;
+ for (kcol = *kbot + 1; i__1 < 0 ? kcol >= i__2 : kcol <= i__2;
+ kcol += i__1) {
+/* Computing MIN */
+ i__3 = *nh, i__4 = *n - kcol + 1;
+ kln = min(i__3,i__4);
+ cgemm_("C", "N", &jw, &kln, &jw, &c_b2, &v[v_offset], ldv, &
+ h__[kwtop + kcol * h_dim1], ldh, &c_b1, &t[t_offset],
+ ldt);
+ clacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol *
+ h_dim1], ldh);
+/* L70: */
+ }
+ }
+
+/* ==== Update vertical slab in Z ==== */
+
+ if (*wantz) {
+ i__1 = *ihiz;
+ i__2 = *nv;
+ for (krow = *iloz; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
+ i__2) {
+/* Computing MIN */
+ i__3 = *nv, i__4 = *ihiz - krow + 1;
+ kln = min(i__3,i__4);
+ cgemm_("N", "N", &kln, &jw, &jw, &c_b2, &z__[krow + kwtop *
+ z_dim1], ldz, &v[v_offset], ldv, &c_b1, &wv[wv_offset]
+, ldwv);
+ clacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow +
+ kwtop * z_dim1], ldz);
+/* L80: */
+ }
+ }
+ }
+
+/* ==== Return the number of deflations ... ==== */
+
+ *nd = jw - *ns;
+
+/* ==== ... and the number of shifts. (Subtracting */
+/* . INFQR from the spike length takes care */
+/* . of the case of a rare QR failure while */
+/* . calculating eigenvalues of the deflation */
+/* . window.) ==== */
+
+ *ns -= infqr;
+
+/* ==== Return optimal workspace. ==== */
+
+ r__1 = (real) lwkopt;
+ q__1.r = r__1, q__1.i = 0.f;
+ work[1].r = q__1.r, work[1].i = q__1.i;
+
+/* ==== End of CLAQR3 ==== */
+
+ return 0;
+} /* claqr3_ */