aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/claqps.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/claqps.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/claqps.c')
-rw-r--r--contrib/libs/clapack/claqps.c367
1 files changed, 367 insertions, 0 deletions
diff --git a/contrib/libs/clapack/claqps.c b/contrib/libs/clapack/claqps.c
new file mode 100644
index 0000000000..ae14316fa8
--- /dev/null
+++ b/contrib/libs/clapack/claqps.c
@@ -0,0 +1,367 @@
+/* claqps.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static complex c_b1 = {0.f,0.f};
+static complex c_b2 = {1.f,0.f};
+static integer c__1 = 1;
+
+/* Subroutine */ int claqps_(integer *m, integer *n, integer *offset, integer
+ *nb, integer *kb, complex *a, integer *lda, integer *jpvt, complex *
+ tau, real *vn1, real *vn2, complex *auxv, complex *f, integer *ldf)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, f_dim1, f_offset, i__1, i__2, i__3;
+ real r__1, r__2;
+ complex q__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+ void r_cnjg(complex *, complex *);
+ double c_abs(complex *);
+ integer i_nint(real *);
+
+ /* Local variables */
+ integer j, k, rk;
+ complex akk;
+ integer pvt;
+ real temp, temp2, tol3z;
+ extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *,
+ integer *, complex *, complex *, integer *, complex *, integer *,
+ complex *, complex *, integer *), cgemv_(char *,
+ integer *, integer *, complex *, complex *, integer *, complex *,
+ integer *, complex *, complex *, integer *), cswap_(
+ integer *, complex *, integer *, complex *, integer *);
+ integer itemp;
+ extern doublereal scnrm2_(integer *, complex *, integer *);
+ extern /* Subroutine */ int clarfp_(integer *, complex *, complex *,
+ integer *, complex *);
+ extern doublereal slamch_(char *);
+ integer lsticc;
+ extern integer isamax_(integer *, real *, integer *);
+ integer lastrk;
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
+/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CLAQPS computes a step of QR factorization with column pivoting */
+/* of a complex M-by-N matrix A by using Blas-3. It tries to factorize */
+/* NB columns from A starting from the row OFFSET+1, and updates all */
+/* of the matrix with Blas-3 xGEMM. */
+
+/* In some cases, due to catastrophic cancellations, it cannot */
+/* factorize NB columns. Hence, the actual number of factorized */
+/* columns is returned in KB. */
+
+/* Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. */
+
+/* Arguments */
+/* ========= */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix A. M >= 0. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrix A. N >= 0 */
+
+/* OFFSET (input) INTEGER */
+/* The number of rows of A that have been factorized in */
+/* previous steps. */
+
+/* NB (input) INTEGER */
+/* The number of columns to factorize. */
+
+/* KB (output) INTEGER */
+/* The number of columns actually factorized. */
+
+/* A (input/output) COMPLEX array, dimension (LDA,N) */
+/* On entry, the M-by-N matrix A. */
+/* On exit, block A(OFFSET+1:M,1:KB) is the triangular */
+/* factor obtained and block A(1:OFFSET,1:N) has been */
+/* accordingly pivoted, but no factorized. */
+/* The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has */
+/* been updated. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,M). */
+
+/* JPVT (input/output) INTEGER array, dimension (N) */
+/* JPVT(I) = K <==> Column K of the full matrix A has been */
+/* permuted into position I in AP. */
+
+/* TAU (output) COMPLEX array, dimension (KB) */
+/* The scalar factors of the elementary reflectors. */
+
+/* VN1 (input/output) REAL array, dimension (N) */
+/* The vector with the partial column norms. */
+
+/* VN2 (input/output) REAL array, dimension (N) */
+/* The vector with the exact column norms. */
+
+/* AUXV (input/output) COMPLEX array, dimension (NB) */
+/* Auxiliar vector. */
+
+/* F (input/output) COMPLEX array, dimension (LDF,NB) */
+/* Matrix F' = L*Y'*A. */
+
+/* LDF (input) INTEGER */
+/* The leading dimension of the array F. LDF >= max(1,N). */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */
+/* X. Sun, Computer Science Dept., Duke University, USA */
+
+/* Partial column norm updating strategy modified by */
+/* Z. Drmac and Z. Bujanovic, Dept. of Mathematics, */
+/* University of Zagreb, Croatia. */
+/* June 2006. */
+/* For more details see LAPACK Working Note 176. */
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --jpvt;
+ --tau;
+ --vn1;
+ --vn2;
+ --auxv;
+ f_dim1 = *ldf;
+ f_offset = 1 + f_dim1;
+ f -= f_offset;
+
+ /* Function Body */
+/* Computing MIN */
+ i__1 = *m, i__2 = *n + *offset;
+ lastrk = min(i__1,i__2);
+ lsticc = 0;
+ k = 0;
+ tol3z = sqrt(slamch_("Epsilon"));
+
+/* Beginning of while loop. */
+
+L10:
+ if (k < *nb && lsticc == 0) {
+ ++k;
+ rk = *offset + k;
+
+/* Determine ith pivot column and swap if necessary */
+
+ i__1 = *n - k + 1;
+ pvt = k - 1 + isamax_(&i__1, &vn1[k], &c__1);
+ if (pvt != k) {
+ cswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1);
+ i__1 = k - 1;
+ cswap_(&i__1, &f[pvt + f_dim1], ldf, &f[k + f_dim1], ldf);
+ itemp = jpvt[pvt];
+ jpvt[pvt] = jpvt[k];
+ jpvt[k] = itemp;
+ vn1[pvt] = vn1[k];
+ vn2[pvt] = vn2[k];
+ }
+
+/* Apply previous Householder reflectors to column K: */
+/* A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)'. */
+
+ if (k > 1) {
+ i__1 = k - 1;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = k + j * f_dim1;
+ r_cnjg(&q__1, &f[k + j * f_dim1]);
+ f[i__2].r = q__1.r, f[i__2].i = q__1.i;
+/* L20: */
+ }
+ i__1 = *m - rk + 1;
+ i__2 = k - 1;
+ q__1.r = -1.f, q__1.i = -0.f;
+ cgemv_("No transpose", &i__1, &i__2, &q__1, &a[rk + a_dim1], lda,
+ &f[k + f_dim1], ldf, &c_b2, &a[rk + k * a_dim1], &c__1);
+ i__1 = k - 1;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = k + j * f_dim1;
+ r_cnjg(&q__1, &f[k + j * f_dim1]);
+ f[i__2].r = q__1.r, f[i__2].i = q__1.i;
+/* L30: */
+ }
+ }
+
+/* Generate elementary reflector H(k). */
+
+ if (rk < *m) {
+ i__1 = *m - rk + 1;
+ clarfp_(&i__1, &a[rk + k * a_dim1], &a[rk + 1 + k * a_dim1], &
+ c__1, &tau[k]);
+ } else {
+ clarfp_(&c__1, &a[rk + k * a_dim1], &a[rk + k * a_dim1], &c__1, &
+ tau[k]);
+ }
+
+ i__1 = rk + k * a_dim1;
+ akk.r = a[i__1].r, akk.i = a[i__1].i;
+ i__1 = rk + k * a_dim1;
+ a[i__1].r = 1.f, a[i__1].i = 0.f;
+
+/* Compute Kth column of F: */
+
+/* Compute F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K). */
+
+ if (k < *n) {
+ i__1 = *m - rk + 1;
+ i__2 = *n - k;
+ cgemv_("Conjugate transpose", &i__1, &i__2, &tau[k], &a[rk + (k +
+ 1) * a_dim1], lda, &a[rk + k * a_dim1], &c__1, &c_b1, &f[
+ k + 1 + k * f_dim1], &c__1);
+ }
+
+/* Padding F(1:K,K) with zeros. */
+
+ i__1 = k;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j + k * f_dim1;
+ f[i__2].r = 0.f, f[i__2].i = 0.f;
+/* L40: */
+ }
+
+/* Incremental updating of F: */
+/* F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)' */
+/* *A(RK:M,K). */
+
+ if (k > 1) {
+ i__1 = *m - rk + 1;
+ i__2 = k - 1;
+ i__3 = k;
+ q__1.r = -tau[i__3].r, q__1.i = -tau[i__3].i;
+ cgemv_("Conjugate transpose", &i__1, &i__2, &q__1, &a[rk + a_dim1]
+, lda, &a[rk + k * a_dim1], &c__1, &c_b1, &auxv[1], &c__1);
+
+ i__1 = k - 1;
+ cgemv_("No transpose", n, &i__1, &c_b2, &f[f_dim1 + 1], ldf, &
+ auxv[1], &c__1, &c_b2, &f[k * f_dim1 + 1], &c__1);
+ }
+
+/* Update the current row of A: */
+/* A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)'. */
+
+ if (k < *n) {
+ i__1 = *n - k;
+ q__1.r = -1.f, q__1.i = -0.f;
+ cgemm_("No transpose", "Conjugate transpose", &c__1, &i__1, &k, &
+ q__1, &a[rk + a_dim1], lda, &f[k + 1 + f_dim1], ldf, &
+ c_b2, &a[rk + (k + 1) * a_dim1], lda);
+ }
+
+/* Update partial column norms. */
+
+ if (rk < lastrk) {
+ i__1 = *n;
+ for (j = k + 1; j <= i__1; ++j) {
+ if (vn1[j] != 0.f) {
+
+/* NOTE: The following 4 lines follow from the analysis in */
+/* Lapack Working Note 176. */
+
+ temp = c_abs(&a[rk + j * a_dim1]) / vn1[j];
+/* Computing MAX */
+ r__1 = 0.f, r__2 = (temp + 1.f) * (1.f - temp);
+ temp = dmax(r__1,r__2);
+/* Computing 2nd power */
+ r__1 = vn1[j] / vn2[j];
+ temp2 = temp * (r__1 * r__1);
+ if (temp2 <= tol3z) {
+ vn2[j] = (real) lsticc;
+ lsticc = j;
+ } else {
+ vn1[j] *= sqrt(temp);
+ }
+ }
+/* L50: */
+ }
+ }
+
+ i__1 = rk + k * a_dim1;
+ a[i__1].r = akk.r, a[i__1].i = akk.i;
+
+/* End of while loop. */
+
+ goto L10;
+ }
+ *kb = k;
+ rk = *offset + *kb;
+
+/* Apply the block reflector to the rest of the matrix: */
+/* A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) - */
+/* A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)'. */
+
+/* Computing MIN */
+ i__1 = *n, i__2 = *m - *offset;
+ if (*kb < min(i__1,i__2)) {
+ i__1 = *m - rk;
+ i__2 = *n - *kb;
+ q__1.r = -1.f, q__1.i = -0.f;
+ cgemm_("No transpose", "Conjugate transpose", &i__1, &i__2, kb, &q__1,
+ &a[rk + 1 + a_dim1], lda, &f[*kb + 1 + f_dim1], ldf, &c_b2, &
+ a[rk + 1 + (*kb + 1) * a_dim1], lda);
+ }
+
+/* Recomputation of difficult columns. */
+
+L60:
+ if (lsticc > 0) {
+ itemp = i_nint(&vn2[lsticc]);
+ i__1 = *m - rk;
+ vn1[lsticc] = scnrm2_(&i__1, &a[rk + 1 + lsticc * a_dim1], &c__1);
+
+/* NOTE: The computation of VN1( LSTICC ) relies on the fact that */
+/* SNRM2 does not fail on vectors with norm below the value of */
+/* SQRT(DLAMCH('S')) */
+
+ vn2[lsticc] = vn1[lsticc];
+ lsticc = itemp;
+ goto L60;
+ }
+
+ return 0;
+
+/* End of CLAQPS */
+
+} /* claqps_ */