aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/clanhp.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/clanhp.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/clanhp.c')
-rw-r--r--contrib/libs/clapack/clanhp.c277
1 files changed, 277 insertions, 0 deletions
diff --git a/contrib/libs/clapack/clanhp.c b/contrib/libs/clapack/clanhp.c
new file mode 100644
index 0000000000..824b178920
--- /dev/null
+++ b/contrib/libs/clapack/clanhp.c
@@ -0,0 +1,277 @@
+/* clanhp.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+
+doublereal clanhp_(char *norm, char *uplo, integer *n, complex *ap, real *
+ work)
+{
+ /* System generated locals */
+ integer i__1, i__2;
+ real ret_val, r__1, r__2, r__3;
+
+ /* Builtin functions */
+ double c_abs(complex *), sqrt(doublereal);
+
+ /* Local variables */
+ integer i__, j, k;
+ real sum, absa, scale;
+ extern logical lsame_(char *, char *);
+ real value;
+ extern /* Subroutine */ int classq_(integer *, complex *, integer *, real
+ *, real *);
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CLANHP returns the value of the one norm, or the Frobenius norm, or */
+/* the infinity norm, or the element of largest absolute value of a */
+/* complex hermitian matrix A, supplied in packed form. */
+
+/* Description */
+/* =========== */
+
+/* CLANHP returns the value */
+
+/* CLANHP = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
+/* ( */
+/* ( norm1(A), NORM = '1', 'O' or 'o' */
+/* ( */
+/* ( normI(A), NORM = 'I' or 'i' */
+/* ( */
+/* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
+
+/* where norm1 denotes the one norm of a matrix (maximum column sum), */
+/* normI denotes the infinity norm of a matrix (maximum row sum) and */
+/* normF denotes the Frobenius norm of a matrix (square root of sum of */
+/* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */
+
+/* Arguments */
+/* ========= */
+
+/* NORM (input) CHARACTER*1 */
+/* Specifies the value to be returned in CLANHP as described */
+/* above. */
+
+/* UPLO (input) CHARACTER*1 */
+/* Specifies whether the upper or lower triangular part of the */
+/* hermitian matrix A is supplied. */
+/* = 'U': Upper triangular part of A is supplied */
+/* = 'L': Lower triangular part of A is supplied */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. When N = 0, CLANHP is */
+/* set to zero. */
+
+/* AP (input) COMPLEX array, dimension (N*(N+1)/2) */
+/* The upper or lower triangle of the hermitian matrix A, packed */
+/* columnwise in a linear array. The j-th column of A is stored */
+/* in the array AP as follows: */
+/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
+/* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
+/* Note that the imaginary parts of the diagonal elements need */
+/* not be set and are assumed to be zero. */
+
+/* WORK (workspace) REAL array, dimension (MAX(1,LWORK)), */
+/* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, */
+/* WORK is not referenced. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+ /* Parameter adjustments */
+ --work;
+ --ap;
+
+ /* Function Body */
+ if (*n == 0) {
+ value = 0.f;
+ } else if (lsame_(norm, "M")) {
+
+/* Find max(abs(A(i,j))). */
+
+ value = 0.f;
+ if (lsame_(uplo, "U")) {
+ k = 0;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = k + j - 1;
+ for (i__ = k + 1; i__ <= i__2; ++i__) {
+/* Computing MAX */
+ r__1 = value, r__2 = c_abs(&ap[i__]);
+ value = dmax(r__1,r__2);
+/* L10: */
+ }
+ k += j;
+/* Computing MAX */
+ i__2 = k;
+ r__2 = value, r__3 = (r__1 = ap[i__2].r, dabs(r__1));
+ value = dmax(r__2,r__3);
+/* L20: */
+ }
+ } else {
+ k = 1;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MAX */
+ i__2 = k;
+ r__2 = value, r__3 = (r__1 = ap[i__2].r, dabs(r__1));
+ value = dmax(r__2,r__3);
+ i__2 = k + *n - j;
+ for (i__ = k + 1; i__ <= i__2; ++i__) {
+/* Computing MAX */
+ r__1 = value, r__2 = c_abs(&ap[i__]);
+ value = dmax(r__1,r__2);
+/* L30: */
+ }
+ k = k + *n - j + 1;
+/* L40: */
+ }
+ }
+ } else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') {
+
+/* Find normI(A) ( = norm1(A), since A is hermitian). */
+
+ value = 0.f;
+ k = 1;
+ if (lsame_(uplo, "U")) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ sum = 0.f;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ absa = c_abs(&ap[k]);
+ sum += absa;
+ work[i__] += absa;
+ ++k;
+/* L50: */
+ }
+ i__2 = k;
+ work[j] = sum + (r__1 = ap[i__2].r, dabs(r__1));
+ ++k;
+/* L60: */
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+/* Computing MAX */
+ r__1 = value, r__2 = work[i__];
+ value = dmax(r__1,r__2);
+/* L70: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ work[i__] = 0.f;
+/* L80: */
+ }
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = k;
+ sum = work[j] + (r__1 = ap[i__2].r, dabs(r__1));
+ ++k;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ absa = c_abs(&ap[k]);
+ sum += absa;
+ work[i__] += absa;
+ ++k;
+/* L90: */
+ }
+ value = dmax(value,sum);
+/* L100: */
+ }
+ }
+ } else if (lsame_(norm, "F") || lsame_(norm, "E")) {
+
+/* Find normF(A). */
+
+ scale = 0.f;
+ sum = 1.f;
+ k = 2;
+ if (lsame_(uplo, "U")) {
+ i__1 = *n;
+ for (j = 2; j <= i__1; ++j) {
+ i__2 = j - 1;
+ classq_(&i__2, &ap[k], &c__1, &scale, &sum);
+ k += j;
+/* L110: */
+ }
+ } else {
+ i__1 = *n - 1;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n - j;
+ classq_(&i__2, &ap[k], &c__1, &scale, &sum);
+ k = k + *n - j + 1;
+/* L120: */
+ }
+ }
+ sum *= 2;
+ k = 1;
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = k;
+ if (ap[i__2].r != 0.f) {
+ i__2 = k;
+ absa = (r__1 = ap[i__2].r, dabs(r__1));
+ if (scale < absa) {
+/* Computing 2nd power */
+ r__1 = scale / absa;
+ sum = sum * (r__1 * r__1) + 1.f;
+ scale = absa;
+ } else {
+/* Computing 2nd power */
+ r__1 = absa / scale;
+ sum += r__1 * r__1;
+ }
+ }
+ if (lsame_(uplo, "U")) {
+ k = k + i__ + 1;
+ } else {
+ k = k + *n - i__ + 1;
+ }
+/* L130: */
+ }
+ value = scale * sqrt(sum);
+ }
+
+ ret_val = value;
+ return ret_val;
+
+/* End of CLANHP */
+
+} /* clanhp_ */