diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/claed0.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/claed0.c')
-rw-r--r-- | contrib/libs/clapack/claed0.c | 367 |
1 files changed, 367 insertions, 0 deletions
diff --git a/contrib/libs/clapack/claed0.c b/contrib/libs/clapack/claed0.c new file mode 100644 index 0000000000..a1f2a9bcb5 --- /dev/null +++ b/contrib/libs/clapack/claed0.c @@ -0,0 +1,367 @@ +/* claed0.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__9 = 9; +static integer c__0 = 0; +static integer c__2 = 2; +static integer c__1 = 1; + +/* Subroutine */ int claed0_(integer *qsiz, integer *n, real *d__, real *e, + complex *q, integer *ldq, complex *qstore, integer *ldqs, real *rwork, + integer *iwork, integer *info) +{ + /* System generated locals */ + integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2; + real r__1; + + /* Builtin functions */ + double log(doublereal); + integer pow_ii(integer *, integer *); + + /* Local variables */ + integer i__, j, k, ll, iq, lgn, msd2, smm1, spm1, spm2; + real temp; + integer curr, iperm; + extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, + complex *, integer *); + integer indxq, iwrem; + extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, + integer *); + integer iqptr; + extern /* Subroutine */ int claed7_(integer *, integer *, integer *, + integer *, integer *, integer *, real *, complex *, integer *, + real *, integer *, real *, integer *, integer *, integer *, + integer *, integer *, real *, complex *, real *, integer *, + integer *); + integer tlvls; + extern /* Subroutine */ int clacrm_(integer *, integer *, complex *, + integer *, real *, integer *, complex *, integer *, real *); + integer igivcl; + extern /* Subroutine */ int xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + integer igivnm, submat, curprb, subpbs, igivpt, curlvl, matsiz, iprmpt, + smlsiz; + extern /* Subroutine */ int ssteqr_(char *, integer *, real *, real *, + real *, integer *, real *, integer *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* Using the divide and conquer method, CLAED0 computes all eigenvalues */ +/* of a symmetric tridiagonal matrix which is one diagonal block of */ +/* those from reducing a dense or band Hermitian matrix and */ +/* corresponding eigenvectors of the dense or band matrix. */ + +/* Arguments */ +/* ========= */ + +/* QSIZ (input) INTEGER */ +/* The dimension of the unitary matrix used to reduce */ +/* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */ + +/* N (input) INTEGER */ +/* The dimension of the symmetric tridiagonal matrix. N >= 0. */ + +/* D (input/output) REAL array, dimension (N) */ +/* On entry, the diagonal elements of the tridiagonal matrix. */ +/* On exit, the eigenvalues in ascending order. */ + +/* E (input/output) REAL array, dimension (N-1) */ +/* On entry, the off-diagonal elements of the tridiagonal matrix. */ +/* On exit, E has been destroyed. */ + +/* Q (input/output) COMPLEX array, dimension (LDQ,N) */ +/* On entry, Q must contain an QSIZ x N matrix whose columns */ +/* unitarily orthonormal. It is a part of the unitary matrix */ +/* that reduces the full dense Hermitian matrix to a */ +/* (reducible) symmetric tridiagonal matrix. */ + +/* LDQ (input) INTEGER */ +/* The leading dimension of the array Q. LDQ >= max(1,N). */ + +/* IWORK (workspace) INTEGER array, */ +/* the dimension of IWORK must be at least */ +/* 6 + 6*N + 5*N*lg N */ +/* ( lg( N ) = smallest integer k */ +/* such that 2^k >= N ) */ + +/* RWORK (workspace) REAL array, */ +/* dimension (1 + 3*N + 2*N*lg N + 3*N**2) */ +/* ( lg( N ) = smallest integer k */ +/* such that 2^k >= N ) */ + +/* QSTORE (workspace) COMPLEX array, dimension (LDQS, N) */ +/* Used to store parts of */ +/* the eigenvector matrix when the updating matrix multiplies */ +/* take place. */ + +/* LDQS (input) INTEGER */ +/* The leading dimension of the array QSTORE. */ +/* LDQS >= max(1,N). */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit. */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ +/* > 0: The algorithm failed to compute an eigenvalue while */ +/* working on the submatrix lying in rows and columns */ +/* INFO/(N+1) through mod(INFO,N+1). */ + +/* ===================================================================== */ + +/* Warning: N could be as big as QSIZ! */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + --d__; + --e; + q_dim1 = *ldq; + q_offset = 1 + q_dim1; + q -= q_offset; + qstore_dim1 = *ldqs; + qstore_offset = 1 + qstore_dim1; + qstore -= qstore_offset; + --rwork; + --iwork; + + /* Function Body */ + *info = 0; + +/* IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN */ +/* INFO = -1 */ +/* ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) ) */ +/* $ THEN */ + if (*qsiz < max(0,*n)) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*ldq < max(1,*n)) { + *info = -6; + } else if (*ldqs < max(1,*n)) { + *info = -8; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CLAED0", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + + smlsiz = ilaenv_(&c__9, "CLAED0", " ", &c__0, &c__0, &c__0, &c__0); + +/* Determine the size and placement of the submatrices, and save in */ +/* the leading elements of IWORK. */ + + iwork[1] = *n; + subpbs = 1; + tlvls = 0; +L10: + if (iwork[subpbs] > smlsiz) { + for (j = subpbs; j >= 1; --j) { + iwork[j * 2] = (iwork[j] + 1) / 2; + iwork[(j << 1) - 1] = iwork[j] / 2; +/* L20: */ + } + ++tlvls; + subpbs <<= 1; + goto L10; + } + i__1 = subpbs; + for (j = 2; j <= i__1; ++j) { + iwork[j] += iwork[j - 1]; +/* L30: */ + } + +/* Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 */ +/* using rank-1 modifications (cuts). */ + + spm1 = subpbs - 1; + i__1 = spm1; + for (i__ = 1; i__ <= i__1; ++i__) { + submat = iwork[i__] + 1; + smm1 = submat - 1; + d__[smm1] -= (r__1 = e[smm1], dabs(r__1)); + d__[submat] -= (r__1 = e[smm1], dabs(r__1)); +/* L40: */ + } + + indxq = (*n << 2) + 3; + +/* Set up workspaces for eigenvalues only/accumulate new vectors */ +/* routine */ + + temp = log((real) (*n)) / log(2.f); + lgn = (integer) temp; + if (pow_ii(&c__2, &lgn) < *n) { + ++lgn; + } + if (pow_ii(&c__2, &lgn) < *n) { + ++lgn; + } + iprmpt = indxq + *n + 1; + iperm = iprmpt + *n * lgn; + iqptr = iperm + *n * lgn; + igivpt = iqptr + *n + 2; + igivcl = igivpt + *n * lgn; + + igivnm = 1; + iq = igivnm + (*n << 1) * lgn; +/* Computing 2nd power */ + i__1 = *n; + iwrem = iq + i__1 * i__1 + 1; +/* Initialize pointers */ + i__1 = subpbs; + for (i__ = 0; i__ <= i__1; ++i__) { + iwork[iprmpt + i__] = 1; + iwork[igivpt + i__] = 1; +/* L50: */ + } + iwork[iqptr] = 1; + +/* Solve each submatrix eigenproblem at the bottom of the divide and */ +/* conquer tree. */ + + curr = 0; + i__1 = spm1; + for (i__ = 0; i__ <= i__1; ++i__) { + if (i__ == 0) { + submat = 1; + matsiz = iwork[1]; + } else { + submat = iwork[i__] + 1; + matsiz = iwork[i__ + 1] - iwork[i__]; + } + ll = iq - 1 + iwork[iqptr + curr]; + ssteqr_("I", &matsiz, &d__[submat], &e[submat], &rwork[ll], &matsiz, & + rwork[1], info); + clacrm_(qsiz, &matsiz, &q[submat * q_dim1 + 1], ldq, &rwork[ll], & + matsiz, &qstore[submat * qstore_dim1 + 1], ldqs, &rwork[iwrem] +); +/* Computing 2nd power */ + i__2 = matsiz; + iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2; + ++curr; + if (*info > 0) { + *info = submat * (*n + 1) + submat + matsiz - 1; + return 0; + } + k = 1; + i__2 = iwork[i__ + 1]; + for (j = submat; j <= i__2; ++j) { + iwork[indxq + j] = k; + ++k; +/* L60: */ + } +/* L70: */ + } + +/* Successively merge eigensystems of adjacent submatrices */ +/* into eigensystem for the corresponding larger matrix. */ + +/* while ( SUBPBS > 1 ) */ + + curlvl = 1; +L80: + if (subpbs > 1) { + spm2 = subpbs - 2; + i__1 = spm2; + for (i__ = 0; i__ <= i__1; i__ += 2) { + if (i__ == 0) { + submat = 1; + matsiz = iwork[2]; + msd2 = iwork[1]; + curprb = 0; + } else { + submat = iwork[i__] + 1; + matsiz = iwork[i__ + 2] - iwork[i__]; + msd2 = matsiz / 2; + ++curprb; + } + +/* Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) */ +/* into an eigensystem of size MATSIZ. CLAED7 handles the case */ +/* when the eigenvectors of a full or band Hermitian matrix (which */ +/* was reduced to tridiagonal form) are desired. */ + +/* I am free to use Q as a valuable working space until Loop 150. */ + + claed7_(&matsiz, &msd2, qsiz, &tlvls, &curlvl, &curprb, &d__[ + submat], &qstore[submat * qstore_dim1 + 1], ldqs, &e[ + submat + msd2 - 1], &iwork[indxq + submat], &rwork[iq], & + iwork[iqptr], &iwork[iprmpt], &iwork[iperm], &iwork[ + igivpt], &iwork[igivcl], &rwork[igivnm], &q[submat * + q_dim1 + 1], &rwork[iwrem], &iwork[subpbs + 1], info); + if (*info > 0) { + *info = submat * (*n + 1) + submat + matsiz - 1; + return 0; + } + iwork[i__ / 2 + 1] = iwork[i__ + 2]; +/* L90: */ + } + subpbs /= 2; + ++curlvl; + goto L80; + } + +/* end while */ + +/* Re-merge the eigenvalues/vectors which were deflated at the final */ +/* merge step. */ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + j = iwork[indxq + i__]; + rwork[i__] = d__[j]; + ccopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1 + 1] +, &c__1); +/* L100: */ + } + scopy_(n, &rwork[1], &c__1, &d__[1], &c__1); + + return 0; + +/* End of CLAED0 */ + +} /* claed0_ */ |