aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/claed0.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/claed0.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/claed0.c')
-rw-r--r--contrib/libs/clapack/claed0.c367
1 files changed, 367 insertions, 0 deletions
diff --git a/contrib/libs/clapack/claed0.c b/contrib/libs/clapack/claed0.c
new file mode 100644
index 0000000000..a1f2a9bcb5
--- /dev/null
+++ b/contrib/libs/clapack/claed0.c
@@ -0,0 +1,367 @@
+/* claed0.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__9 = 9;
+static integer c__0 = 0;
+static integer c__2 = 2;
+static integer c__1 = 1;
+
+/* Subroutine */ int claed0_(integer *qsiz, integer *n, real *d__, real *e,
+ complex *q, integer *ldq, complex *qstore, integer *ldqs, real *rwork,
+ integer *iwork, integer *info)
+{
+ /* System generated locals */
+ integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
+ real r__1;
+
+ /* Builtin functions */
+ double log(doublereal);
+ integer pow_ii(integer *, integer *);
+
+ /* Local variables */
+ integer i__, j, k, ll, iq, lgn, msd2, smm1, spm1, spm2;
+ real temp;
+ integer curr, iperm;
+ extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
+ complex *, integer *);
+ integer indxq, iwrem;
+ extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
+ integer *);
+ integer iqptr;
+ extern /* Subroutine */ int claed7_(integer *, integer *, integer *,
+ integer *, integer *, integer *, real *, complex *, integer *,
+ real *, integer *, real *, integer *, integer *, integer *,
+ integer *, integer *, real *, complex *, real *, integer *,
+ integer *);
+ integer tlvls;
+ extern /* Subroutine */ int clacrm_(integer *, integer *, complex *,
+ integer *, real *, integer *, complex *, integer *, real *);
+ integer igivcl;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ integer igivnm, submat, curprb, subpbs, igivpt, curlvl, matsiz, iprmpt,
+ smlsiz;
+ extern /* Subroutine */ int ssteqr_(char *, integer *, real *, real *,
+ real *, integer *, real *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* Using the divide and conquer method, CLAED0 computes all eigenvalues */
+/* of a symmetric tridiagonal matrix which is one diagonal block of */
+/* those from reducing a dense or band Hermitian matrix and */
+/* corresponding eigenvectors of the dense or band matrix. */
+
+/* Arguments */
+/* ========= */
+
+/* QSIZ (input) INTEGER */
+/* The dimension of the unitary matrix used to reduce */
+/* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */
+
+/* N (input) INTEGER */
+/* The dimension of the symmetric tridiagonal matrix. N >= 0. */
+
+/* D (input/output) REAL array, dimension (N) */
+/* On entry, the diagonal elements of the tridiagonal matrix. */
+/* On exit, the eigenvalues in ascending order. */
+
+/* E (input/output) REAL array, dimension (N-1) */
+/* On entry, the off-diagonal elements of the tridiagonal matrix. */
+/* On exit, E has been destroyed. */
+
+/* Q (input/output) COMPLEX array, dimension (LDQ,N) */
+/* On entry, Q must contain an QSIZ x N matrix whose columns */
+/* unitarily orthonormal. It is a part of the unitary matrix */
+/* that reduces the full dense Hermitian matrix to a */
+/* (reducible) symmetric tridiagonal matrix. */
+
+/* LDQ (input) INTEGER */
+/* The leading dimension of the array Q. LDQ >= max(1,N). */
+
+/* IWORK (workspace) INTEGER array, */
+/* the dimension of IWORK must be at least */
+/* 6 + 6*N + 5*N*lg N */
+/* ( lg( N ) = smallest integer k */
+/* such that 2^k >= N ) */
+
+/* RWORK (workspace) REAL array, */
+/* dimension (1 + 3*N + 2*N*lg N + 3*N**2) */
+/* ( lg( N ) = smallest integer k */
+/* such that 2^k >= N ) */
+
+/* QSTORE (workspace) COMPLEX array, dimension (LDQS, N) */
+/* Used to store parts of */
+/* the eigenvector matrix when the updating matrix multiplies */
+/* take place. */
+
+/* LDQS (input) INTEGER */
+/* The leading dimension of the array QSTORE. */
+/* LDQS >= max(1,N). */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit. */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+/* > 0: The algorithm failed to compute an eigenvalue while */
+/* working on the submatrix lying in rows and columns */
+/* INFO/(N+1) through mod(INFO,N+1). */
+
+/* ===================================================================== */
+
+/* Warning: N could be as big as QSIZ! */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --d__;
+ --e;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1;
+ q -= q_offset;
+ qstore_dim1 = *ldqs;
+ qstore_offset = 1 + qstore_dim1;
+ qstore -= qstore_offset;
+ --rwork;
+ --iwork;
+
+ /* Function Body */
+ *info = 0;
+
+/* IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN */
+/* INFO = -1 */
+/* ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) ) */
+/* $ THEN */
+ if (*qsiz < max(0,*n)) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*ldq < max(1,*n)) {
+ *info = -6;
+ } else if (*ldqs < max(1,*n)) {
+ *info = -8;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CLAED0", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ smlsiz = ilaenv_(&c__9, "CLAED0", " ", &c__0, &c__0, &c__0, &c__0);
+
+/* Determine the size and placement of the submatrices, and save in */
+/* the leading elements of IWORK. */
+
+ iwork[1] = *n;
+ subpbs = 1;
+ tlvls = 0;
+L10:
+ if (iwork[subpbs] > smlsiz) {
+ for (j = subpbs; j >= 1; --j) {
+ iwork[j * 2] = (iwork[j] + 1) / 2;
+ iwork[(j << 1) - 1] = iwork[j] / 2;
+/* L20: */
+ }
+ ++tlvls;
+ subpbs <<= 1;
+ goto L10;
+ }
+ i__1 = subpbs;
+ for (j = 2; j <= i__1; ++j) {
+ iwork[j] += iwork[j - 1];
+/* L30: */
+ }
+
+/* Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 */
+/* using rank-1 modifications (cuts). */
+
+ spm1 = subpbs - 1;
+ i__1 = spm1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ submat = iwork[i__] + 1;
+ smm1 = submat - 1;
+ d__[smm1] -= (r__1 = e[smm1], dabs(r__1));
+ d__[submat] -= (r__1 = e[smm1], dabs(r__1));
+/* L40: */
+ }
+
+ indxq = (*n << 2) + 3;
+
+/* Set up workspaces for eigenvalues only/accumulate new vectors */
+/* routine */
+
+ temp = log((real) (*n)) / log(2.f);
+ lgn = (integer) temp;
+ if (pow_ii(&c__2, &lgn) < *n) {
+ ++lgn;
+ }
+ if (pow_ii(&c__2, &lgn) < *n) {
+ ++lgn;
+ }
+ iprmpt = indxq + *n + 1;
+ iperm = iprmpt + *n * lgn;
+ iqptr = iperm + *n * lgn;
+ igivpt = iqptr + *n + 2;
+ igivcl = igivpt + *n * lgn;
+
+ igivnm = 1;
+ iq = igivnm + (*n << 1) * lgn;
+/* Computing 2nd power */
+ i__1 = *n;
+ iwrem = iq + i__1 * i__1 + 1;
+/* Initialize pointers */
+ i__1 = subpbs;
+ for (i__ = 0; i__ <= i__1; ++i__) {
+ iwork[iprmpt + i__] = 1;
+ iwork[igivpt + i__] = 1;
+/* L50: */
+ }
+ iwork[iqptr] = 1;
+
+/* Solve each submatrix eigenproblem at the bottom of the divide and */
+/* conquer tree. */
+
+ curr = 0;
+ i__1 = spm1;
+ for (i__ = 0; i__ <= i__1; ++i__) {
+ if (i__ == 0) {
+ submat = 1;
+ matsiz = iwork[1];
+ } else {
+ submat = iwork[i__] + 1;
+ matsiz = iwork[i__ + 1] - iwork[i__];
+ }
+ ll = iq - 1 + iwork[iqptr + curr];
+ ssteqr_("I", &matsiz, &d__[submat], &e[submat], &rwork[ll], &matsiz, &
+ rwork[1], info);
+ clacrm_(qsiz, &matsiz, &q[submat * q_dim1 + 1], ldq, &rwork[ll], &
+ matsiz, &qstore[submat * qstore_dim1 + 1], ldqs, &rwork[iwrem]
+);
+/* Computing 2nd power */
+ i__2 = matsiz;
+ iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;
+ ++curr;
+ if (*info > 0) {
+ *info = submat * (*n + 1) + submat + matsiz - 1;
+ return 0;
+ }
+ k = 1;
+ i__2 = iwork[i__ + 1];
+ for (j = submat; j <= i__2; ++j) {
+ iwork[indxq + j] = k;
+ ++k;
+/* L60: */
+ }
+/* L70: */
+ }
+
+/* Successively merge eigensystems of adjacent submatrices */
+/* into eigensystem for the corresponding larger matrix. */
+
+/* while ( SUBPBS > 1 ) */
+
+ curlvl = 1;
+L80:
+ if (subpbs > 1) {
+ spm2 = subpbs - 2;
+ i__1 = spm2;
+ for (i__ = 0; i__ <= i__1; i__ += 2) {
+ if (i__ == 0) {
+ submat = 1;
+ matsiz = iwork[2];
+ msd2 = iwork[1];
+ curprb = 0;
+ } else {
+ submat = iwork[i__] + 1;
+ matsiz = iwork[i__ + 2] - iwork[i__];
+ msd2 = matsiz / 2;
+ ++curprb;
+ }
+
+/* Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) */
+/* into an eigensystem of size MATSIZ. CLAED7 handles the case */
+/* when the eigenvectors of a full or band Hermitian matrix (which */
+/* was reduced to tridiagonal form) are desired. */
+
+/* I am free to use Q as a valuable working space until Loop 150. */
+
+ claed7_(&matsiz, &msd2, qsiz, &tlvls, &curlvl, &curprb, &d__[
+ submat], &qstore[submat * qstore_dim1 + 1], ldqs, &e[
+ submat + msd2 - 1], &iwork[indxq + submat], &rwork[iq], &
+ iwork[iqptr], &iwork[iprmpt], &iwork[iperm], &iwork[
+ igivpt], &iwork[igivcl], &rwork[igivnm], &q[submat *
+ q_dim1 + 1], &rwork[iwrem], &iwork[subpbs + 1], info);
+ if (*info > 0) {
+ *info = submat * (*n + 1) + submat + matsiz - 1;
+ return 0;
+ }
+ iwork[i__ / 2 + 1] = iwork[i__ + 2];
+/* L90: */
+ }
+ subpbs /= 2;
+ ++curlvl;
+ goto L80;
+ }
+
+/* end while */
+
+/* Re-merge the eigenvalues/vectors which were deflated at the final */
+/* merge step. */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ j = iwork[indxq + i__];
+ rwork[i__] = d__[j];
+ ccopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1 + 1]
+, &c__1);
+/* L100: */
+ }
+ scopy_(n, &rwork[1], &c__1, &d__[1], &c__1);
+
+ return 0;
+
+/* End of CLAED0 */
+
+} /* claed0_ */