diff options
author | maxim-yurchuk <maxim-yurchuk@yandex-team.com> | 2024-10-09 12:29:46 +0300 |
---|---|---|
committer | maxim-yurchuk <maxim-yurchuk@yandex-team.com> | 2024-10-09 13:14:22 +0300 |
commit | 9731d8a4bb7ee2cc8554eaf133bb85498a4c7d80 (patch) | |
tree | a8fb3181d5947c0d78cf402aa56e686130179049 /contrib/libs/clapack/cla_syrcond_c.c | |
parent | a44b779cd359f06c3ebbef4ec98c6b38609d9d85 (diff) | |
download | ydb-9731d8a4bb7ee2cc8554eaf133bb85498a4c7d80.tar.gz |
publishFullContrib: true for ydb
<HIDDEN_URL>
commit_hash:c82a80ac4594723cebf2c7387dec9c60217f603e
Diffstat (limited to 'contrib/libs/clapack/cla_syrcond_c.c')
-rw-r--r-- | contrib/libs/clapack/cla_syrcond_c.c | 330 |
1 files changed, 330 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cla_syrcond_c.c b/contrib/libs/clapack/cla_syrcond_c.c new file mode 100644 index 0000000000..4c52b17406 --- /dev/null +++ b/contrib/libs/clapack/cla_syrcond_c.c @@ -0,0 +1,330 @@ +/* cla_syrcond_c.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; + +doublereal cla_syrcond_c__(char *uplo, integer *n, complex *a, integer *lda, + complex *af, integer *ldaf, integer *ipiv, real *c__, logical *capply, + integer *info, complex *work, real *rwork, ftnlen uplo_len) +{ + /* System generated locals */ + integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2, i__3, i__4; + real ret_val, r__1, r__2; + complex q__1; + + /* Builtin functions */ + double r_imag(complex *); + + /* Local variables */ + integer i__, j; + logical up; + real tmp; + integer kase; + extern logical lsame_(char *, char *); + integer isave[3]; + real anorm; + extern /* Subroutine */ int clacn2_(integer *, complex *, complex *, real + *, integer *, integer *), xerbla_(char *, integer *); + real ainvnm; + extern /* Subroutine */ int csytrs_(char *, integer *, integer *, complex + *, integer *, integer *, complex *, integer *, integer *); + + +/* -- LAPACK routine (version 3.2.1) -- */ +/* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */ +/* -- Jason Riedy of Univ. of California Berkeley. -- */ +/* -- April 2009 -- */ + +/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ +/* -- Univ. of California Berkeley and NAG Ltd. -- */ + +/* .. */ +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CLA_SYRCOND_C Computes the infinity norm condition number of */ +/* op(A) * inv(diag(C)) where C is a REAL vector. */ + +/* Arguments */ +/* ========= */ + +/* UPLO (input) CHARACTER*1 */ +/* = 'U': Upper triangle of A is stored; */ +/* = 'L': Lower triangle of A is stored. */ + +/* N (input) INTEGER */ +/* The number of linear equations, i.e., the order of the */ +/* matrix A. N >= 0. */ + +/* A (input) COMPLEX array, dimension (LDA,N) */ +/* On entry, the N-by-N matrix A */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* AF (input) COMPLEX array, dimension (LDAF,N) */ +/* The block diagonal matrix D and the multipliers used to */ +/* obtain the factor U or L as computed by CSYTRF. */ + +/* LDAF (input) INTEGER */ +/* The leading dimension of the array AF. LDAF >= max(1,N). */ + +/* IPIV (input) INTEGER array, dimension (N) */ +/* Details of the interchanges and the block structure of D */ +/* as determined by CSYTRF. */ + +/* C (input) REAL array, dimension (N) */ +/* The vector C in the formula op(A) * inv(diag(C)). */ + +/* CAPPLY (input) LOGICAL */ +/* If .TRUE. then access the vector C in the formula above. */ + +/* INFO (output) INTEGER */ +/* = 0: Successful exit. */ +/* i > 0: The ith argument is invalid. */ + +/* WORK (input) COMPLEX array, dimension (2*N). */ +/* Workspace. */ + +/* RWORK (input) REAL array, dimension (N). */ +/* Workspace. */ + +/* ===================================================================== */ + +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Statement Functions .. */ +/* .. */ +/* .. Statement Function Definitions .. */ +/* .. */ +/* .. Executable Statements .. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + af_dim1 = *ldaf; + af_offset = 1 + af_dim1; + af -= af_offset; + --ipiv; + --c__; + --work; + --rwork; + + /* Function Body */ + ret_val = 0.f; + + *info = 0; + if (*n < 0) { + *info = -2; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CLA_SYRCOND_C", &i__1); + return ret_val; + } + up = FALSE_; + if (lsame_(uplo, "U")) { + up = TRUE_; + } + +/* Compute norm of op(A)*op2(C). */ + + anorm = 0.f; + if (up) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + tmp = 0.f; + if (*capply) { + i__2 = i__; + for (j = 1; j <= i__2; ++j) { + i__3 = j + i__ * a_dim1; + tmp += ((r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(& + a[j + i__ * a_dim1]), dabs(r__2))) / c__[j]; + } + i__2 = *n; + for (j = i__ + 1; j <= i__2; ++j) { + i__3 = i__ + j * a_dim1; + tmp += ((r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(& + a[i__ + j * a_dim1]), dabs(r__2))) / c__[j]; + } + } else { + i__2 = i__; + for (j = 1; j <= i__2; ++j) { + i__3 = j + i__ * a_dim1; + tmp += (r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(&a[ + j + i__ * a_dim1]), dabs(r__2)); + } + i__2 = *n; + for (j = i__ + 1; j <= i__2; ++j) { + i__3 = i__ + j * a_dim1; + tmp += (r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(&a[ + i__ + j * a_dim1]), dabs(r__2)); + } + } + rwork[i__] = tmp; + anorm = dmax(anorm,tmp); + } + } else { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + tmp = 0.f; + if (*capply) { + i__2 = i__; + for (j = 1; j <= i__2; ++j) { + i__3 = i__ + j * a_dim1; + tmp += ((r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(& + a[i__ + j * a_dim1]), dabs(r__2))) / c__[j]; + } + i__2 = *n; + for (j = i__ + 1; j <= i__2; ++j) { + i__3 = j + i__ * a_dim1; + tmp += ((r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(& + a[j + i__ * a_dim1]), dabs(r__2))) / c__[j]; + } + } else { + i__2 = i__; + for (j = 1; j <= i__2; ++j) { + i__3 = i__ + j * a_dim1; + tmp += (r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(&a[ + i__ + j * a_dim1]), dabs(r__2)); + } + i__2 = *n; + for (j = i__ + 1; j <= i__2; ++j) { + i__3 = j + i__ * a_dim1; + tmp += (r__1 = a[i__3].r, dabs(r__1)) + (r__2 = r_imag(&a[ + j + i__ * a_dim1]), dabs(r__2)); + } + } + rwork[i__] = tmp; + anorm = dmax(anorm,tmp); + } + } + +/* Quick return if possible. */ + + if (*n == 0) { + ret_val = 1.f; + return ret_val; + } else if (anorm == 0.f) { + return ret_val; + } + +/* Estimate the norm of inv(op(A)). */ + + ainvnm = 0.f; + + kase = 0; +L10: + clacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave); + if (kase != 0) { + if (kase == 2) { + +/* Multiply by R. */ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + i__3 = i__; + i__4 = i__; + q__1.r = rwork[i__4] * work[i__3].r, q__1.i = rwork[i__4] * + work[i__3].i; + work[i__2].r = q__1.r, work[i__2].i = q__1.i; + } + + if (up) { + csytrs_("U", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[ + 1], n, info); + } else { + csytrs_("L", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[ + 1], n, info); + } + +/* Multiply by inv(C). */ + + if (*capply) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + i__3 = i__; + i__4 = i__; + q__1.r = c__[i__4] * work[i__3].r, q__1.i = c__[i__4] * + work[i__3].i; + work[i__2].r = q__1.r, work[i__2].i = q__1.i; + } + } + } else { + +/* Multiply by inv(C'). */ + + if (*capply) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + i__3 = i__; + i__4 = i__; + q__1.r = c__[i__4] * work[i__3].r, q__1.i = c__[i__4] * + work[i__3].i; + work[i__2].r = q__1.r, work[i__2].i = q__1.i; + } + } + + if (up) { + csytrs_("U", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[ + 1], n, info); + } else { + csytrs_("L", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[ + 1], n, info); + } + +/* Multiply by R. */ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + i__3 = i__; + i__4 = i__; + q__1.r = rwork[i__4] * work[i__3].r, q__1.i = rwork[i__4] * + work[i__3].i; + work[i__2].r = q__1.r, work[i__2].i = q__1.i; + } + } + goto L10; + } + +/* Compute the estimate of the reciprocal condition number. */ + + if (ainvnm != 0.f) { + ret_val = 1.f / ainvnm; + } + + return ret_val; + +} /* cla_syrcond_c__ */ |