aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/chptrf.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/chptrf.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/chptrf.c')
-rw-r--r--contrib/libs/clapack/chptrf.c821
1 files changed, 821 insertions, 0 deletions
diff --git a/contrib/libs/clapack/chptrf.c b/contrib/libs/clapack/chptrf.c
new file mode 100644
index 0000000000..47d93370b6
--- /dev/null
+++ b/contrib/libs/clapack/chptrf.c
@@ -0,0 +1,821 @@
+/* chptrf.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+
+/* Subroutine */ int chptrf_(char *uplo, integer *n, complex *ap, integer *
+ ipiv, integer *info)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3, i__4, i__5, i__6;
+ real r__1, r__2, r__3, r__4;
+ complex q__1, q__2, q__3, q__4, q__5, q__6;
+
+ /* Builtin functions */
+ double sqrt(doublereal), r_imag(complex *);
+ void r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ real d__;
+ integer i__, j, k;
+ complex t;
+ real r1, d11;
+ complex d12;
+ real d22;
+ complex d21;
+ integer kc, kk, kp;
+ complex wk;
+ integer kx;
+ real tt;
+ integer knc, kpc, npp;
+ complex wkm1, wkp1;
+ extern /* Subroutine */ int chpr_(char *, integer *, real *, complex *,
+ integer *, complex *);
+ integer imax, jmax;
+ real alpha;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int cswap_(integer *, complex *, integer *,
+ complex *, integer *);
+ integer kstep;
+ logical upper;
+ extern doublereal slapy2_(real *, real *);
+ real absakk;
+ extern integer icamax_(integer *, complex *, integer *);
+ extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer
+ *), xerbla_(char *, integer *);
+ real colmax, rowmax;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CHPTRF computes the factorization of a complex Hermitian packed */
+/* matrix A using the Bunch-Kaufman diagonal pivoting method: */
+
+/* A = U*D*U**H or A = L*D*L**H */
+
+/* where U (or L) is a product of permutation and unit upper (lower) */
+/* triangular matrices, and D is Hermitian and block diagonal with */
+/* 1-by-1 and 2-by-2 diagonal blocks. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangle of A is stored; */
+/* = 'L': Lower triangle of A is stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* AP (input/output) COMPLEX array, dimension (N*(N+1)/2) */
+/* On entry, the upper or lower triangle of the Hermitian matrix */
+/* A, packed columnwise in a linear array. The j-th column of A */
+/* is stored in the array AP as follows: */
+/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
+/* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
+
+/* On exit, the block diagonal matrix D and the multipliers used */
+/* to obtain the factor U or L, stored as a packed triangular */
+/* matrix overwriting A (see below for further details). */
+
+/* IPIV (output) INTEGER array, dimension (N) */
+/* Details of the interchanges and the block structure of D. */
+/* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
+/* interchanged and D(k,k) is a 1-by-1 diagonal block. */
+/* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
+/* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
+/* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
+/* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
+/* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, D(i,i) is exactly zero. The factorization */
+/* has been completed, but the block diagonal matrix D is */
+/* exactly singular, and division by zero will occur if it */
+/* is used to solve a system of equations. */
+
+/* Further Details */
+/* =============== */
+
+/* 5-96 - Based on modifications by J. Lewis, Boeing Computer Services */
+/* Company */
+
+/* If UPLO = 'U', then A = U*D*U', where */
+/* U = P(n)*U(n)* ... *P(k)U(k)* ..., */
+/* i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
+/* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
+/* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
+/* defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
+/* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
+
+/* ( I v 0 ) k-s */
+/* U(k) = ( 0 I 0 ) s */
+/* ( 0 0 I ) n-k */
+/* k-s s n-k */
+
+/* If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
+/* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
+/* and A(k,k), and v overwrites A(1:k-2,k-1:k). */
+
+/* If UPLO = 'L', then A = L*D*L', where */
+/* L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
+/* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
+/* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
+/* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
+/* defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
+/* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
+
+/* ( I 0 0 ) k-1 */
+/* L(k) = ( 0 I 0 ) s */
+/* ( 0 v I ) n-k-s+1 */
+/* k-1 s n-k-s+1 */
+
+/* If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
+/* If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
+/* and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Statement Functions .. */
+/* .. */
+/* .. Statement Function definitions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --ipiv;
+ --ap;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CHPTRF", &i__1);
+ return 0;
+ }
+
+/* Initialize ALPHA for use in choosing pivot block size. */
+
+ alpha = (sqrt(17.f) + 1.f) / 8.f;
+
+ if (upper) {
+
+/* Factorize A as U*D*U' using the upper triangle of A */
+
+/* K is the main loop index, decreasing from N to 1 in steps of */
+/* 1 or 2 */
+
+ k = *n;
+ kc = (*n - 1) * *n / 2 + 1;
+L10:
+ knc = kc;
+
+/* If K < 1, exit from loop */
+
+ if (k < 1) {
+ goto L110;
+ }
+ kstep = 1;
+
+/* Determine rows and columns to be interchanged and whether */
+/* a 1-by-1 or 2-by-2 pivot block will be used */
+
+ i__1 = kc + k - 1;
+ absakk = (r__1 = ap[i__1].r, dabs(r__1));
+
+/* IMAX is the row-index of the largest off-diagonal element in */
+/* column K, and COLMAX is its absolute value */
+
+ if (k > 1) {
+ i__1 = k - 1;
+ imax = icamax_(&i__1, &ap[kc], &c__1);
+ i__1 = kc + imax - 1;
+ colmax = (r__1 = ap[i__1].r, dabs(r__1)) + (r__2 = r_imag(&ap[kc
+ + imax - 1]), dabs(r__2));
+ } else {
+ colmax = 0.f;
+ }
+
+ if (dmax(absakk,colmax) == 0.f) {
+
+/* Column K is zero: set INFO and continue */
+
+ if (*info == 0) {
+ *info = k;
+ }
+ kp = k;
+ i__1 = kc + k - 1;
+ i__2 = kc + k - 1;
+ r__1 = ap[i__2].r;
+ ap[i__1].r = r__1, ap[i__1].i = 0.f;
+ } else {
+ if (absakk >= alpha * colmax) {
+
+/* no interchange, use 1-by-1 pivot block */
+
+ kp = k;
+ } else {
+
+/* JMAX is the column-index of the largest off-diagonal */
+/* element in row IMAX, and ROWMAX is its absolute value */
+
+ rowmax = 0.f;
+ jmax = imax;
+ kx = imax * (imax + 1) / 2 + imax;
+ i__1 = k;
+ for (j = imax + 1; j <= i__1; ++j) {
+ i__2 = kx;
+ if ((r__1 = ap[i__2].r, dabs(r__1)) + (r__2 = r_imag(&ap[
+ kx]), dabs(r__2)) > rowmax) {
+ i__2 = kx;
+ rowmax = (r__1 = ap[i__2].r, dabs(r__1)) + (r__2 =
+ r_imag(&ap[kx]), dabs(r__2));
+ jmax = j;
+ }
+ kx += j;
+/* L20: */
+ }
+ kpc = (imax - 1) * imax / 2 + 1;
+ if (imax > 1) {
+ i__1 = imax - 1;
+ jmax = icamax_(&i__1, &ap[kpc], &c__1);
+/* Computing MAX */
+ i__1 = kpc + jmax - 1;
+ r__3 = rowmax, r__4 = (r__1 = ap[i__1].r, dabs(r__1)) + (
+ r__2 = r_imag(&ap[kpc + jmax - 1]), dabs(r__2));
+ rowmax = dmax(r__3,r__4);
+ }
+
+ if (absakk >= alpha * colmax * (colmax / rowmax)) {
+
+/* no interchange, use 1-by-1 pivot block */
+
+ kp = k;
+ } else /* if(complicated condition) */ {
+ i__1 = kpc + imax - 1;
+ if ((r__1 = ap[i__1].r, dabs(r__1)) >= alpha * rowmax) {
+
+/* interchange rows and columns K and IMAX, use 1-by-1 */
+/* pivot block */
+
+ kp = imax;
+ } else {
+
+/* interchange rows and columns K-1 and IMAX, use 2-by-2 */
+/* pivot block */
+
+ kp = imax;
+ kstep = 2;
+ }
+ }
+ }
+
+ kk = k - kstep + 1;
+ if (kstep == 2) {
+ knc = knc - k + 1;
+ }
+ if (kp != kk) {
+
+/* Interchange rows and columns KK and KP in the leading */
+/* submatrix A(1:k,1:k) */
+
+ i__1 = kp - 1;
+ cswap_(&i__1, &ap[knc], &c__1, &ap[kpc], &c__1);
+ kx = kpc + kp - 1;
+ i__1 = kk - 1;
+ for (j = kp + 1; j <= i__1; ++j) {
+ kx = kx + j - 1;
+ r_cnjg(&q__1, &ap[knc + j - 1]);
+ t.r = q__1.r, t.i = q__1.i;
+ i__2 = knc + j - 1;
+ r_cnjg(&q__1, &ap[kx]);
+ ap[i__2].r = q__1.r, ap[i__2].i = q__1.i;
+ i__2 = kx;
+ ap[i__2].r = t.r, ap[i__2].i = t.i;
+/* L30: */
+ }
+ i__1 = kx + kk - 1;
+ r_cnjg(&q__1, &ap[kx + kk - 1]);
+ ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
+ i__1 = knc + kk - 1;
+ r1 = ap[i__1].r;
+ i__1 = knc + kk - 1;
+ i__2 = kpc + kp - 1;
+ r__1 = ap[i__2].r;
+ ap[i__1].r = r__1, ap[i__1].i = 0.f;
+ i__1 = kpc + kp - 1;
+ ap[i__1].r = r1, ap[i__1].i = 0.f;
+ if (kstep == 2) {
+ i__1 = kc + k - 1;
+ i__2 = kc + k - 1;
+ r__1 = ap[i__2].r;
+ ap[i__1].r = r__1, ap[i__1].i = 0.f;
+ i__1 = kc + k - 2;
+ t.r = ap[i__1].r, t.i = ap[i__1].i;
+ i__1 = kc + k - 2;
+ i__2 = kc + kp - 1;
+ ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
+ i__1 = kc + kp - 1;
+ ap[i__1].r = t.r, ap[i__1].i = t.i;
+ }
+ } else {
+ i__1 = kc + k - 1;
+ i__2 = kc + k - 1;
+ r__1 = ap[i__2].r;
+ ap[i__1].r = r__1, ap[i__1].i = 0.f;
+ if (kstep == 2) {
+ i__1 = kc - 1;
+ i__2 = kc - 1;
+ r__1 = ap[i__2].r;
+ ap[i__1].r = r__1, ap[i__1].i = 0.f;
+ }
+ }
+
+/* Update the leading submatrix */
+
+ if (kstep == 1) {
+
+/* 1-by-1 pivot block D(k): column k now holds */
+
+/* W(k) = U(k)*D(k) */
+
+/* where U(k) is the k-th column of U */
+
+/* Perform a rank-1 update of A(1:k-1,1:k-1) as */
+
+/* A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)' */
+
+ i__1 = kc + k - 1;
+ r1 = 1.f / ap[i__1].r;
+ i__1 = k - 1;
+ r__1 = -r1;
+ chpr_(uplo, &i__1, &r__1, &ap[kc], &c__1, &ap[1]);
+
+/* Store U(k) in column k */
+
+ i__1 = k - 1;
+ csscal_(&i__1, &r1, &ap[kc], &c__1);
+ } else {
+
+/* 2-by-2 pivot block D(k): columns k and k-1 now hold */
+
+/* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
+
+/* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
+/* of U */
+
+/* Perform a rank-2 update of A(1:k-2,1:k-2) as */
+
+/* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )' */
+/* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )' */
+
+ if (k > 2) {
+
+ i__1 = k - 1 + (k - 1) * k / 2;
+ r__1 = ap[i__1].r;
+ r__2 = r_imag(&ap[k - 1 + (k - 1) * k / 2]);
+ d__ = slapy2_(&r__1, &r__2);
+ i__1 = k - 1 + (k - 2) * (k - 1) / 2;
+ d22 = ap[i__1].r / d__;
+ i__1 = k + (k - 1) * k / 2;
+ d11 = ap[i__1].r / d__;
+ tt = 1.f / (d11 * d22 - 1.f);
+ i__1 = k - 1 + (k - 1) * k / 2;
+ q__1.r = ap[i__1].r / d__, q__1.i = ap[i__1].i / d__;
+ d12.r = q__1.r, d12.i = q__1.i;
+ d__ = tt / d__;
+
+ for (j = k - 2; j >= 1; --j) {
+ i__1 = j + (k - 2) * (k - 1) / 2;
+ q__3.r = d11 * ap[i__1].r, q__3.i = d11 * ap[i__1].i;
+ r_cnjg(&q__5, &d12);
+ i__2 = j + (k - 1) * k / 2;
+ q__4.r = q__5.r * ap[i__2].r - q__5.i * ap[i__2].i,
+ q__4.i = q__5.r * ap[i__2].i + q__5.i * ap[
+ i__2].r;
+ q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
+ q__1.r = d__ * q__2.r, q__1.i = d__ * q__2.i;
+ wkm1.r = q__1.r, wkm1.i = q__1.i;
+ i__1 = j + (k - 1) * k / 2;
+ q__3.r = d22 * ap[i__1].r, q__3.i = d22 * ap[i__1].i;
+ i__2 = j + (k - 2) * (k - 1) / 2;
+ q__4.r = d12.r * ap[i__2].r - d12.i * ap[i__2].i,
+ q__4.i = d12.r * ap[i__2].i + d12.i * ap[i__2]
+ .r;
+ q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
+ q__1.r = d__ * q__2.r, q__1.i = d__ * q__2.i;
+ wk.r = q__1.r, wk.i = q__1.i;
+ for (i__ = j; i__ >= 1; --i__) {
+ i__1 = i__ + (j - 1) * j / 2;
+ i__2 = i__ + (j - 1) * j / 2;
+ i__3 = i__ + (k - 1) * k / 2;
+ r_cnjg(&q__4, &wk);
+ q__3.r = ap[i__3].r * q__4.r - ap[i__3].i *
+ q__4.i, q__3.i = ap[i__3].r * q__4.i + ap[
+ i__3].i * q__4.r;
+ q__2.r = ap[i__2].r - q__3.r, q__2.i = ap[i__2].i
+ - q__3.i;
+ i__4 = i__ + (k - 2) * (k - 1) / 2;
+ r_cnjg(&q__6, &wkm1);
+ q__5.r = ap[i__4].r * q__6.r - ap[i__4].i *
+ q__6.i, q__5.i = ap[i__4].r * q__6.i + ap[
+ i__4].i * q__6.r;
+ q__1.r = q__2.r - q__5.r, q__1.i = q__2.i -
+ q__5.i;
+ ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
+/* L40: */
+ }
+ i__1 = j + (k - 1) * k / 2;
+ ap[i__1].r = wk.r, ap[i__1].i = wk.i;
+ i__1 = j + (k - 2) * (k - 1) / 2;
+ ap[i__1].r = wkm1.r, ap[i__1].i = wkm1.i;
+ i__1 = j + (j - 1) * j / 2;
+ i__2 = j + (j - 1) * j / 2;
+ r__1 = ap[i__2].r;
+ q__1.r = r__1, q__1.i = 0.f;
+ ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
+/* L50: */
+ }
+
+ }
+
+ }
+ }
+
+/* Store details of the interchanges in IPIV */
+
+ if (kstep == 1) {
+ ipiv[k] = kp;
+ } else {
+ ipiv[k] = -kp;
+ ipiv[k - 1] = -kp;
+ }
+
+/* Decrease K and return to the start of the main loop */
+
+ k -= kstep;
+ kc = knc - k;
+ goto L10;
+
+ } else {
+
+/* Factorize A as L*D*L' using the lower triangle of A */
+
+/* K is the main loop index, increasing from 1 to N in steps of */
+/* 1 or 2 */
+
+ k = 1;
+ kc = 1;
+ npp = *n * (*n + 1) / 2;
+L60:
+ knc = kc;
+
+/* If K > N, exit from loop */
+
+ if (k > *n) {
+ goto L110;
+ }
+ kstep = 1;
+
+/* Determine rows and columns to be interchanged and whether */
+/* a 1-by-1 or 2-by-2 pivot block will be used */
+
+ i__1 = kc;
+ absakk = (r__1 = ap[i__1].r, dabs(r__1));
+
+/* IMAX is the row-index of the largest off-diagonal element in */
+/* column K, and COLMAX is its absolute value */
+
+ if (k < *n) {
+ i__1 = *n - k;
+ imax = k + icamax_(&i__1, &ap[kc + 1], &c__1);
+ i__1 = kc + imax - k;
+ colmax = (r__1 = ap[i__1].r, dabs(r__1)) + (r__2 = r_imag(&ap[kc
+ + imax - k]), dabs(r__2));
+ } else {
+ colmax = 0.f;
+ }
+
+ if (dmax(absakk,colmax) == 0.f) {
+
+/* Column K is zero: set INFO and continue */
+
+ if (*info == 0) {
+ *info = k;
+ }
+ kp = k;
+ i__1 = kc;
+ i__2 = kc;
+ r__1 = ap[i__2].r;
+ ap[i__1].r = r__1, ap[i__1].i = 0.f;
+ } else {
+ if (absakk >= alpha * colmax) {
+
+/* no interchange, use 1-by-1 pivot block */
+
+ kp = k;
+ } else {
+
+/* JMAX is the column-index of the largest off-diagonal */
+/* element in row IMAX, and ROWMAX is its absolute value */
+
+ rowmax = 0.f;
+ kx = kc + imax - k;
+ i__1 = imax - 1;
+ for (j = k; j <= i__1; ++j) {
+ i__2 = kx;
+ if ((r__1 = ap[i__2].r, dabs(r__1)) + (r__2 = r_imag(&ap[
+ kx]), dabs(r__2)) > rowmax) {
+ i__2 = kx;
+ rowmax = (r__1 = ap[i__2].r, dabs(r__1)) + (r__2 =
+ r_imag(&ap[kx]), dabs(r__2));
+ jmax = j;
+ }
+ kx = kx + *n - j;
+/* L70: */
+ }
+ kpc = npp - (*n - imax + 1) * (*n - imax + 2) / 2 + 1;
+ if (imax < *n) {
+ i__1 = *n - imax;
+ jmax = imax + icamax_(&i__1, &ap[kpc + 1], &c__1);
+/* Computing MAX */
+ i__1 = kpc + jmax - imax;
+ r__3 = rowmax, r__4 = (r__1 = ap[i__1].r, dabs(r__1)) + (
+ r__2 = r_imag(&ap[kpc + jmax - imax]), dabs(r__2))
+ ;
+ rowmax = dmax(r__3,r__4);
+ }
+
+ if (absakk >= alpha * colmax * (colmax / rowmax)) {
+
+/* no interchange, use 1-by-1 pivot block */
+
+ kp = k;
+ } else /* if(complicated condition) */ {
+ i__1 = kpc;
+ if ((r__1 = ap[i__1].r, dabs(r__1)) >= alpha * rowmax) {
+
+/* interchange rows and columns K and IMAX, use 1-by-1 */
+/* pivot block */
+
+ kp = imax;
+ } else {
+
+/* interchange rows and columns K+1 and IMAX, use 2-by-2 */
+/* pivot block */
+
+ kp = imax;
+ kstep = 2;
+ }
+ }
+ }
+
+ kk = k + kstep - 1;
+ if (kstep == 2) {
+ knc = knc + *n - k + 1;
+ }
+ if (kp != kk) {
+
+/* Interchange rows and columns KK and KP in the trailing */
+/* submatrix A(k:n,k:n) */
+
+ if (kp < *n) {
+ i__1 = *n - kp;
+ cswap_(&i__1, &ap[knc + kp - kk + 1], &c__1, &ap[kpc + 1],
+ &c__1);
+ }
+ kx = knc + kp - kk;
+ i__1 = kp - 1;
+ for (j = kk + 1; j <= i__1; ++j) {
+ kx = kx + *n - j + 1;
+ r_cnjg(&q__1, &ap[knc + j - kk]);
+ t.r = q__1.r, t.i = q__1.i;
+ i__2 = knc + j - kk;
+ r_cnjg(&q__1, &ap[kx]);
+ ap[i__2].r = q__1.r, ap[i__2].i = q__1.i;
+ i__2 = kx;
+ ap[i__2].r = t.r, ap[i__2].i = t.i;
+/* L80: */
+ }
+ i__1 = knc + kp - kk;
+ r_cnjg(&q__1, &ap[knc + kp - kk]);
+ ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
+ i__1 = knc;
+ r1 = ap[i__1].r;
+ i__1 = knc;
+ i__2 = kpc;
+ r__1 = ap[i__2].r;
+ ap[i__1].r = r__1, ap[i__1].i = 0.f;
+ i__1 = kpc;
+ ap[i__1].r = r1, ap[i__1].i = 0.f;
+ if (kstep == 2) {
+ i__1 = kc;
+ i__2 = kc;
+ r__1 = ap[i__2].r;
+ ap[i__1].r = r__1, ap[i__1].i = 0.f;
+ i__1 = kc + 1;
+ t.r = ap[i__1].r, t.i = ap[i__1].i;
+ i__1 = kc + 1;
+ i__2 = kc + kp - k;
+ ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
+ i__1 = kc + kp - k;
+ ap[i__1].r = t.r, ap[i__1].i = t.i;
+ }
+ } else {
+ i__1 = kc;
+ i__2 = kc;
+ r__1 = ap[i__2].r;
+ ap[i__1].r = r__1, ap[i__1].i = 0.f;
+ if (kstep == 2) {
+ i__1 = knc;
+ i__2 = knc;
+ r__1 = ap[i__2].r;
+ ap[i__1].r = r__1, ap[i__1].i = 0.f;
+ }
+ }
+
+/* Update the trailing submatrix */
+
+ if (kstep == 1) {
+
+/* 1-by-1 pivot block D(k): column k now holds */
+
+/* W(k) = L(k)*D(k) */
+
+/* where L(k) is the k-th column of L */
+
+ if (k < *n) {
+
+/* Perform a rank-1 update of A(k+1:n,k+1:n) as */
+
+/* A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)' */
+
+ i__1 = kc;
+ r1 = 1.f / ap[i__1].r;
+ i__1 = *n - k;
+ r__1 = -r1;
+ chpr_(uplo, &i__1, &r__1, &ap[kc + 1], &c__1, &ap[kc + *n
+ - k + 1]);
+
+/* Store L(k) in column K */
+
+ i__1 = *n - k;
+ csscal_(&i__1, &r1, &ap[kc + 1], &c__1);
+ }
+ } else {
+
+/* 2-by-2 pivot block D(k): columns K and K+1 now hold */
+
+/* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
+
+/* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
+/* of L */
+
+ if (k < *n - 1) {
+
+/* Perform a rank-2 update of A(k+2:n,k+2:n) as */
+
+/* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )' */
+/* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )' */
+
+/* where L(k) and L(k+1) are the k-th and (k+1)-th */
+/* columns of L */
+
+ i__1 = k + 1 + (k - 1) * ((*n << 1) - k) / 2;
+ r__1 = ap[i__1].r;
+ r__2 = r_imag(&ap[k + 1 + (k - 1) * ((*n << 1) - k) / 2]);
+ d__ = slapy2_(&r__1, &r__2);
+ i__1 = k + 1 + k * ((*n << 1) - k - 1) / 2;
+ d11 = ap[i__1].r / d__;
+ i__1 = k + (k - 1) * ((*n << 1) - k) / 2;
+ d22 = ap[i__1].r / d__;
+ tt = 1.f / (d11 * d22 - 1.f);
+ i__1 = k + 1 + (k - 1) * ((*n << 1) - k) / 2;
+ q__1.r = ap[i__1].r / d__, q__1.i = ap[i__1].i / d__;
+ d21.r = q__1.r, d21.i = q__1.i;
+ d__ = tt / d__;
+
+ i__1 = *n;
+ for (j = k + 2; j <= i__1; ++j) {
+ i__2 = j + (k - 1) * ((*n << 1) - k) / 2;
+ q__3.r = d11 * ap[i__2].r, q__3.i = d11 * ap[i__2].i;
+ i__3 = j + k * ((*n << 1) - k - 1) / 2;
+ q__4.r = d21.r * ap[i__3].r - d21.i * ap[i__3].i,
+ q__4.i = d21.r * ap[i__3].i + d21.i * ap[i__3]
+ .r;
+ q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
+ q__1.r = d__ * q__2.r, q__1.i = d__ * q__2.i;
+ wk.r = q__1.r, wk.i = q__1.i;
+ i__2 = j + k * ((*n << 1) - k - 1) / 2;
+ q__3.r = d22 * ap[i__2].r, q__3.i = d22 * ap[i__2].i;
+ r_cnjg(&q__5, &d21);
+ i__3 = j + (k - 1) * ((*n << 1) - k) / 2;
+ q__4.r = q__5.r * ap[i__3].r - q__5.i * ap[i__3].i,
+ q__4.i = q__5.r * ap[i__3].i + q__5.i * ap[
+ i__3].r;
+ q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
+ q__1.r = d__ * q__2.r, q__1.i = d__ * q__2.i;
+ wkp1.r = q__1.r, wkp1.i = q__1.i;
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ i__3 = i__ + (j - 1) * ((*n << 1) - j) / 2;
+ i__4 = i__ + (j - 1) * ((*n << 1) - j) / 2;
+ i__5 = i__ + (k - 1) * ((*n << 1) - k) / 2;
+ r_cnjg(&q__4, &wk);
+ q__3.r = ap[i__5].r * q__4.r - ap[i__5].i *
+ q__4.i, q__3.i = ap[i__5].r * q__4.i + ap[
+ i__5].i * q__4.r;
+ q__2.r = ap[i__4].r - q__3.r, q__2.i = ap[i__4].i
+ - q__3.i;
+ i__6 = i__ + k * ((*n << 1) - k - 1) / 2;
+ r_cnjg(&q__6, &wkp1);
+ q__5.r = ap[i__6].r * q__6.r - ap[i__6].i *
+ q__6.i, q__5.i = ap[i__6].r * q__6.i + ap[
+ i__6].i * q__6.r;
+ q__1.r = q__2.r - q__5.r, q__1.i = q__2.i -
+ q__5.i;
+ ap[i__3].r = q__1.r, ap[i__3].i = q__1.i;
+/* L90: */
+ }
+ i__2 = j + (k - 1) * ((*n << 1) - k) / 2;
+ ap[i__2].r = wk.r, ap[i__2].i = wk.i;
+ i__2 = j + k * ((*n << 1) - k - 1) / 2;
+ ap[i__2].r = wkp1.r, ap[i__2].i = wkp1.i;
+ i__2 = j + (j - 1) * ((*n << 1) - j) / 2;
+ i__3 = j + (j - 1) * ((*n << 1) - j) / 2;
+ r__1 = ap[i__3].r;
+ q__1.r = r__1, q__1.i = 0.f;
+ ap[i__2].r = q__1.r, ap[i__2].i = q__1.i;
+/* L100: */
+ }
+ }
+ }
+ }
+
+/* Store details of the interchanges in IPIV */
+
+ if (kstep == 1) {
+ ipiv[k] = kp;
+ } else {
+ ipiv[k] = -kp;
+ ipiv[k + 1] = -kp;
+ }
+
+/* Increase K and return to the start of the main loop */
+
+ k += kstep;
+ kc = knc + *n - k + 2;
+ goto L60;
+
+ }
+
+L110:
+ return 0;
+
+/* End of CHPTRF */
+
+} /* chptrf_ */