aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/chpgst.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/chpgst.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/chpgst.c')
-rw-r--r--contrib/libs/clapack/chpgst.c312
1 files changed, 312 insertions, 0 deletions
diff --git a/contrib/libs/clapack/chpgst.c b/contrib/libs/clapack/chpgst.c
new file mode 100644
index 0000000000..b830930f3c
--- /dev/null
+++ b/contrib/libs/clapack/chpgst.c
@@ -0,0 +1,312 @@
+/* chpgst.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static complex c_b1 = {1.f,0.f};
+static integer c__1 = 1;
+
+/* Subroutine */ int chpgst_(integer *itype, char *uplo, integer *n, complex *
+ ap, complex *bp, integer *info)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3, i__4;
+ real r__1, r__2;
+ complex q__1, q__2, q__3;
+
+ /* Local variables */
+ integer j, k, j1, k1, jj, kk;
+ complex ct;
+ real ajj;
+ integer j1j1;
+ real akk;
+ integer k1k1;
+ real bjj, bkk;
+ extern /* Subroutine */ int chpr2_(char *, integer *, complex *, complex *
+, integer *, complex *, integer *, complex *);
+ extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
+ *, complex *, integer *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int chpmv_(char *, integer *, complex *, complex *
+, complex *, integer *, complex *, complex *, integer *),
+ caxpy_(integer *, complex *, complex *, integer *, complex *,
+ integer *), ctpmv_(char *, char *, char *, integer *, complex *,
+ complex *, integer *);
+ logical upper;
+ extern /* Subroutine */ int ctpsv_(char *, char *, char *, integer *,
+ complex *, complex *, integer *), csscal_(
+ integer *, real *, complex *, integer *), xerbla_(char *, integer
+ *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CHPGST reduces a complex Hermitian-definite generalized */
+/* eigenproblem to standard form, using packed storage. */
+
+/* If ITYPE = 1, the problem is A*x = lambda*B*x, */
+/* and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H) */
+
+/* If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or */
+/* B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L. */
+
+/* B must have been previously factorized as U**H*U or L*L**H by CPPTRF. */
+
+/* Arguments */
+/* ========= */
+
+/* ITYPE (input) INTEGER */
+/* = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H); */
+/* = 2 or 3: compute U*A*U**H or L**H*A*L. */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangle of A is stored and B is factored as */
+/* U**H*U; */
+/* = 'L': Lower triangle of A is stored and B is factored as */
+/* L*L**H. */
+
+/* N (input) INTEGER */
+/* The order of the matrices A and B. N >= 0. */
+
+/* AP (input/output) COMPLEX array, dimension (N*(N+1)/2) */
+/* On entry, the upper or lower triangle of the Hermitian matrix */
+/* A, packed columnwise in a linear array. The j-th column of A */
+/* is stored in the array AP as follows: */
+/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
+/* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
+
+/* On exit, if INFO = 0, the transformed matrix, stored in the */
+/* same format as A. */
+
+/* BP (input) COMPLEX array, dimension (N*(N+1)/2) */
+/* The triangular factor from the Cholesky factorization of B, */
+/* stored in the same format as A, as returned by CPPTRF. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --bp;
+ --ap;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if (*itype < 1 || *itype > 3) {
+ *info = -1;
+ } else if (! upper && ! lsame_(uplo, "L")) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CHPGST", &i__1);
+ return 0;
+ }
+
+ if (*itype == 1) {
+ if (upper) {
+
+/* Compute inv(U')*A*inv(U) */
+
+/* J1 and JJ are the indices of A(1,j) and A(j,j) */
+
+ jj = 0;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ j1 = jj + 1;
+ jj += j;
+
+/* Compute the j-th column of the upper triangle of A */
+
+ i__2 = jj;
+ i__3 = jj;
+ r__1 = ap[i__3].r;
+ ap[i__2].r = r__1, ap[i__2].i = 0.f;
+ i__2 = jj;
+ bjj = bp[i__2].r;
+ ctpsv_(uplo, "Conjugate transpose", "Non-unit", &j, &bp[1], &
+ ap[j1], &c__1);
+ i__2 = j - 1;
+ q__1.r = -1.f, q__1.i = -0.f;
+ chpmv_(uplo, &i__2, &q__1, &ap[1], &bp[j1], &c__1, &c_b1, &ap[
+ j1], &c__1);
+ i__2 = j - 1;
+ r__1 = 1.f / bjj;
+ csscal_(&i__2, &r__1, &ap[j1], &c__1);
+ i__2 = jj;
+ i__3 = jj;
+ i__4 = j - 1;
+ cdotc_(&q__3, &i__4, &ap[j1], &c__1, &bp[j1], &c__1);
+ q__2.r = ap[i__3].r - q__3.r, q__2.i = ap[i__3].i - q__3.i;
+ q__1.r = q__2.r / bjj, q__1.i = q__2.i / bjj;
+ ap[i__2].r = q__1.r, ap[i__2].i = q__1.i;
+/* L10: */
+ }
+ } else {
+
+/* Compute inv(L)*A*inv(L') */
+
+/* KK and K1K1 are the indices of A(k,k) and A(k+1,k+1) */
+
+ kk = 1;
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+ k1k1 = kk + *n - k + 1;
+
+/* Update the lower triangle of A(k:n,k:n) */
+
+ i__2 = kk;
+ akk = ap[i__2].r;
+ i__2 = kk;
+ bkk = bp[i__2].r;
+/* Computing 2nd power */
+ r__1 = bkk;
+ akk /= r__1 * r__1;
+ i__2 = kk;
+ ap[i__2].r = akk, ap[i__2].i = 0.f;
+ if (k < *n) {
+ i__2 = *n - k;
+ r__1 = 1.f / bkk;
+ csscal_(&i__2, &r__1, &ap[kk + 1], &c__1);
+ r__1 = akk * -.5f;
+ ct.r = r__1, ct.i = 0.f;
+ i__2 = *n - k;
+ caxpy_(&i__2, &ct, &bp[kk + 1], &c__1, &ap[kk + 1], &c__1)
+ ;
+ i__2 = *n - k;
+ q__1.r = -1.f, q__1.i = -0.f;
+ chpr2_(uplo, &i__2, &q__1, &ap[kk + 1], &c__1, &bp[kk + 1]
+, &c__1, &ap[k1k1]);
+ i__2 = *n - k;
+ caxpy_(&i__2, &ct, &bp[kk + 1], &c__1, &ap[kk + 1], &c__1)
+ ;
+ i__2 = *n - k;
+ ctpsv_(uplo, "No transpose", "Non-unit", &i__2, &bp[k1k1],
+ &ap[kk + 1], &c__1);
+ }
+ kk = k1k1;
+/* L20: */
+ }
+ }
+ } else {
+ if (upper) {
+
+/* Compute U*A*U' */
+
+/* K1 and KK are the indices of A(1,k) and A(k,k) */
+
+ kk = 0;
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+ k1 = kk + 1;
+ kk += k;
+
+/* Update the upper triangle of A(1:k,1:k) */
+
+ i__2 = kk;
+ akk = ap[i__2].r;
+ i__2 = kk;
+ bkk = bp[i__2].r;
+ i__2 = k - 1;
+ ctpmv_(uplo, "No transpose", "Non-unit", &i__2, &bp[1], &ap[
+ k1], &c__1);
+ r__1 = akk * .5f;
+ ct.r = r__1, ct.i = 0.f;
+ i__2 = k - 1;
+ caxpy_(&i__2, &ct, &bp[k1], &c__1, &ap[k1], &c__1);
+ i__2 = k - 1;
+ chpr2_(uplo, &i__2, &c_b1, &ap[k1], &c__1, &bp[k1], &c__1, &
+ ap[1]);
+ i__2 = k - 1;
+ caxpy_(&i__2, &ct, &bp[k1], &c__1, &ap[k1], &c__1);
+ i__2 = k - 1;
+ csscal_(&i__2, &bkk, &ap[k1], &c__1);
+ i__2 = kk;
+/* Computing 2nd power */
+ r__2 = bkk;
+ r__1 = akk * (r__2 * r__2);
+ ap[i__2].r = r__1, ap[i__2].i = 0.f;
+/* L30: */
+ }
+ } else {
+
+/* Compute L'*A*L */
+
+/* JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1) */
+
+ jj = 1;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ j1j1 = jj + *n - j + 1;
+
+/* Compute the j-th column of the lower triangle of A */
+
+ i__2 = jj;
+ ajj = ap[i__2].r;
+ i__2 = jj;
+ bjj = bp[i__2].r;
+ i__2 = jj;
+ r__1 = ajj * bjj;
+ i__3 = *n - j;
+ cdotc_(&q__2, &i__3, &ap[jj + 1], &c__1, &bp[jj + 1], &c__1);
+ q__1.r = r__1 + q__2.r, q__1.i = q__2.i;
+ ap[i__2].r = q__1.r, ap[i__2].i = q__1.i;
+ i__2 = *n - j;
+ csscal_(&i__2, &bjj, &ap[jj + 1], &c__1);
+ i__2 = *n - j;
+ chpmv_(uplo, &i__2, &c_b1, &ap[j1j1], &bp[jj + 1], &c__1, &
+ c_b1, &ap[jj + 1], &c__1);
+ i__2 = *n - j + 1;
+ ctpmv_(uplo, "Conjugate transpose", "Non-unit", &i__2, &bp[jj]
+, &ap[jj], &c__1);
+ jj = j1j1;
+/* L40: */
+ }
+ }
+ }
+ return 0;
+
+/* End of CHPGST */
+
+} /* chpgst_ */