diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/chpgst.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/chpgst.c')
-rw-r--r-- | contrib/libs/clapack/chpgst.c | 312 |
1 files changed, 312 insertions, 0 deletions
diff --git a/contrib/libs/clapack/chpgst.c b/contrib/libs/clapack/chpgst.c new file mode 100644 index 0000000000..b830930f3c --- /dev/null +++ b/contrib/libs/clapack/chpgst.c @@ -0,0 +1,312 @@ +/* chpgst.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static complex c_b1 = {1.f,0.f}; +static integer c__1 = 1; + +/* Subroutine */ int chpgst_(integer *itype, char *uplo, integer *n, complex * + ap, complex *bp, integer *info) +{ + /* System generated locals */ + integer i__1, i__2, i__3, i__4; + real r__1, r__2; + complex q__1, q__2, q__3; + + /* Local variables */ + integer j, k, j1, k1, jj, kk; + complex ct; + real ajj; + integer j1j1; + real akk; + integer k1k1; + real bjj, bkk; + extern /* Subroutine */ int chpr2_(char *, integer *, complex *, complex * +, integer *, complex *, integer *, complex *); + extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer + *, complex *, integer *); + extern logical lsame_(char *, char *); + extern /* Subroutine */ int chpmv_(char *, integer *, complex *, complex * +, complex *, integer *, complex *, complex *, integer *), + caxpy_(integer *, complex *, complex *, integer *, complex *, + integer *), ctpmv_(char *, char *, char *, integer *, complex *, + complex *, integer *); + logical upper; + extern /* Subroutine */ int ctpsv_(char *, char *, char *, integer *, + complex *, complex *, integer *), csscal_( + integer *, real *, complex *, integer *), xerbla_(char *, integer + *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CHPGST reduces a complex Hermitian-definite generalized */ +/* eigenproblem to standard form, using packed storage. */ + +/* If ITYPE = 1, the problem is A*x = lambda*B*x, */ +/* and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H) */ + +/* If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or */ +/* B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L. */ + +/* B must have been previously factorized as U**H*U or L*L**H by CPPTRF. */ + +/* Arguments */ +/* ========= */ + +/* ITYPE (input) INTEGER */ +/* = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H); */ +/* = 2 or 3: compute U*A*U**H or L**H*A*L. */ + +/* UPLO (input) CHARACTER*1 */ +/* = 'U': Upper triangle of A is stored and B is factored as */ +/* U**H*U; */ +/* = 'L': Lower triangle of A is stored and B is factored as */ +/* L*L**H. */ + +/* N (input) INTEGER */ +/* The order of the matrices A and B. N >= 0. */ + +/* AP (input/output) COMPLEX array, dimension (N*(N+1)/2) */ +/* On entry, the upper or lower triangle of the Hermitian matrix */ +/* A, packed columnwise in a linear array. The j-th column of A */ +/* is stored in the array AP as follows: */ +/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ +/* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */ + +/* On exit, if INFO = 0, the transformed matrix, stored in the */ +/* same format as A. */ + +/* BP (input) COMPLEX array, dimension (N*(N+1)/2) */ +/* The triangular factor from the Cholesky factorization of B, */ +/* stored in the same format as A, as returned by CPPTRF. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + --bp; + --ap; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + if (*itype < 1 || *itype > 3) { + *info = -1; + } else if (! upper && ! lsame_(uplo, "L")) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CHPGST", &i__1); + return 0; + } + + if (*itype == 1) { + if (upper) { + +/* Compute inv(U')*A*inv(U) */ + +/* J1 and JJ are the indices of A(1,j) and A(j,j) */ + + jj = 0; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + j1 = jj + 1; + jj += j; + +/* Compute the j-th column of the upper triangle of A */ + + i__2 = jj; + i__3 = jj; + r__1 = ap[i__3].r; + ap[i__2].r = r__1, ap[i__2].i = 0.f; + i__2 = jj; + bjj = bp[i__2].r; + ctpsv_(uplo, "Conjugate transpose", "Non-unit", &j, &bp[1], & + ap[j1], &c__1); + i__2 = j - 1; + q__1.r = -1.f, q__1.i = -0.f; + chpmv_(uplo, &i__2, &q__1, &ap[1], &bp[j1], &c__1, &c_b1, &ap[ + j1], &c__1); + i__2 = j - 1; + r__1 = 1.f / bjj; + csscal_(&i__2, &r__1, &ap[j1], &c__1); + i__2 = jj; + i__3 = jj; + i__4 = j - 1; + cdotc_(&q__3, &i__4, &ap[j1], &c__1, &bp[j1], &c__1); + q__2.r = ap[i__3].r - q__3.r, q__2.i = ap[i__3].i - q__3.i; + q__1.r = q__2.r / bjj, q__1.i = q__2.i / bjj; + ap[i__2].r = q__1.r, ap[i__2].i = q__1.i; +/* L10: */ + } + } else { + +/* Compute inv(L)*A*inv(L') */ + +/* KK and K1K1 are the indices of A(k,k) and A(k+1,k+1) */ + + kk = 1; + i__1 = *n; + for (k = 1; k <= i__1; ++k) { + k1k1 = kk + *n - k + 1; + +/* Update the lower triangle of A(k:n,k:n) */ + + i__2 = kk; + akk = ap[i__2].r; + i__2 = kk; + bkk = bp[i__2].r; +/* Computing 2nd power */ + r__1 = bkk; + akk /= r__1 * r__1; + i__2 = kk; + ap[i__2].r = akk, ap[i__2].i = 0.f; + if (k < *n) { + i__2 = *n - k; + r__1 = 1.f / bkk; + csscal_(&i__2, &r__1, &ap[kk + 1], &c__1); + r__1 = akk * -.5f; + ct.r = r__1, ct.i = 0.f; + i__2 = *n - k; + caxpy_(&i__2, &ct, &bp[kk + 1], &c__1, &ap[kk + 1], &c__1) + ; + i__2 = *n - k; + q__1.r = -1.f, q__1.i = -0.f; + chpr2_(uplo, &i__2, &q__1, &ap[kk + 1], &c__1, &bp[kk + 1] +, &c__1, &ap[k1k1]); + i__2 = *n - k; + caxpy_(&i__2, &ct, &bp[kk + 1], &c__1, &ap[kk + 1], &c__1) + ; + i__2 = *n - k; + ctpsv_(uplo, "No transpose", "Non-unit", &i__2, &bp[k1k1], + &ap[kk + 1], &c__1); + } + kk = k1k1; +/* L20: */ + } + } + } else { + if (upper) { + +/* Compute U*A*U' */ + +/* K1 and KK are the indices of A(1,k) and A(k,k) */ + + kk = 0; + i__1 = *n; + for (k = 1; k <= i__1; ++k) { + k1 = kk + 1; + kk += k; + +/* Update the upper triangle of A(1:k,1:k) */ + + i__2 = kk; + akk = ap[i__2].r; + i__2 = kk; + bkk = bp[i__2].r; + i__2 = k - 1; + ctpmv_(uplo, "No transpose", "Non-unit", &i__2, &bp[1], &ap[ + k1], &c__1); + r__1 = akk * .5f; + ct.r = r__1, ct.i = 0.f; + i__2 = k - 1; + caxpy_(&i__2, &ct, &bp[k1], &c__1, &ap[k1], &c__1); + i__2 = k - 1; + chpr2_(uplo, &i__2, &c_b1, &ap[k1], &c__1, &bp[k1], &c__1, & + ap[1]); + i__2 = k - 1; + caxpy_(&i__2, &ct, &bp[k1], &c__1, &ap[k1], &c__1); + i__2 = k - 1; + csscal_(&i__2, &bkk, &ap[k1], &c__1); + i__2 = kk; +/* Computing 2nd power */ + r__2 = bkk; + r__1 = akk * (r__2 * r__2); + ap[i__2].r = r__1, ap[i__2].i = 0.f; +/* L30: */ + } + } else { + +/* Compute L'*A*L */ + +/* JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1) */ + + jj = 1; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + j1j1 = jj + *n - j + 1; + +/* Compute the j-th column of the lower triangle of A */ + + i__2 = jj; + ajj = ap[i__2].r; + i__2 = jj; + bjj = bp[i__2].r; + i__2 = jj; + r__1 = ajj * bjj; + i__3 = *n - j; + cdotc_(&q__2, &i__3, &ap[jj + 1], &c__1, &bp[jj + 1], &c__1); + q__1.r = r__1 + q__2.r, q__1.i = q__2.i; + ap[i__2].r = q__1.r, ap[i__2].i = q__1.i; + i__2 = *n - j; + csscal_(&i__2, &bjj, &ap[jj + 1], &c__1); + i__2 = *n - j; + chpmv_(uplo, &i__2, &c_b1, &ap[j1j1], &bp[jj + 1], &c__1, & + c_b1, &ap[jj + 1], &c__1); + i__2 = *n - j + 1; + ctpmv_(uplo, "Conjugate transpose", "Non-unit", &i__2, &bp[jj] +, &ap[jj], &c__1); + jj = j1j1; +/* L40: */ + } + } + } + return 0; + +/* End of CHPGST */ + +} /* chpgst_ */ |