diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/chegvx.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/chegvx.c')
-rw-r--r-- | contrib/libs/clapack/chegvx.c | 394 |
1 files changed, 394 insertions, 0 deletions
diff --git a/contrib/libs/clapack/chegvx.c b/contrib/libs/clapack/chegvx.c new file mode 100644 index 0000000000..89d91defd7 --- /dev/null +++ b/contrib/libs/clapack/chegvx.c @@ -0,0 +1,394 @@ +/* chegvx.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static complex c_b1 = {1.f,0.f}; +static integer c__1 = 1; +static integer c_n1 = -1; + +/* Subroutine */ int chegvx_(integer *itype, char *jobz, char *range, char * + uplo, integer *n, complex *a, integer *lda, complex *b, integer *ldb, + real *vl, real *vu, integer *il, integer *iu, real *abstol, integer * + m, real *w, complex *z__, integer *ldz, complex *work, integer *lwork, + real *rwork, integer *iwork, integer *ifail, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, z_dim1, z_offset, i__1, i__2; + + /* Local variables */ + integer nb; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int ctrmm_(char *, char *, char *, char *, + integer *, integer *, complex *, complex *, integer *, complex *, + integer *); + char trans[1]; + extern /* Subroutine */ int ctrsm_(char *, char *, char *, char *, + integer *, integer *, complex *, complex *, integer *, complex *, + integer *); + logical upper, wantz, alleig, indeig, valeig; + extern /* Subroutine */ int chegst_(integer *, char *, integer *, complex + *, integer *, complex *, integer *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + extern /* Subroutine */ int xerbla_(char *, integer *), cheevx_( + char *, char *, char *, integer *, complex *, integer *, real *, + real *, integer *, integer *, real *, integer *, real *, complex * +, integer *, complex *, integer *, real *, integer *, integer *, + integer *), cpotrf_(char *, integer *, + complex *, integer *, integer *); + integer lwkopt; + logical lquery; + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CHEGVX computes selected eigenvalues, and optionally, eigenvectors */ +/* of a complex generalized Hermitian-definite eigenproblem, of the form */ +/* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and */ +/* B are assumed to be Hermitian and B is also positive definite. */ +/* Eigenvalues and eigenvectors can be selected by specifying either a */ +/* range of values or a range of indices for the desired eigenvalues. */ + +/* Arguments */ +/* ========= */ + +/* ITYPE (input) INTEGER */ +/* Specifies the problem type to be solved: */ +/* = 1: A*x = (lambda)*B*x */ +/* = 2: A*B*x = (lambda)*x */ +/* = 3: B*A*x = (lambda)*x */ + +/* JOBZ (input) CHARACTER*1 */ +/* = 'N': Compute eigenvalues only; */ +/* = 'V': Compute eigenvalues and eigenvectors. */ + +/* RANGE (input) CHARACTER*1 */ +/* = 'A': all eigenvalues will be found. */ +/* = 'V': all eigenvalues in the half-open interval (VL,VU] */ +/* will be found. */ +/* = 'I': the IL-th through IU-th eigenvalues will be found. */ +/* * */ +/* UPLO (input) CHARACTER*1 */ +/* = 'U': Upper triangles of A and B are stored; */ +/* = 'L': Lower triangles of A and B are stored. */ + +/* N (input) INTEGER */ +/* The order of the matrices A and B. N >= 0. */ + +/* A (input/output) COMPLEX array, dimension (LDA, N) */ +/* On entry, the Hermitian matrix A. If UPLO = 'U', the */ +/* leading N-by-N upper triangular part of A contains the */ +/* upper triangular part of the matrix A. If UPLO = 'L', */ +/* the leading N-by-N lower triangular part of A contains */ +/* the lower triangular part of the matrix A. */ + +/* On exit, the lower triangle (if UPLO='L') or the upper */ +/* triangle (if UPLO='U') of A, including the diagonal, is */ +/* destroyed. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* B (input/output) COMPLEX array, dimension (LDB, N) */ +/* On entry, the Hermitian matrix B. If UPLO = 'U', the */ +/* leading N-by-N upper triangular part of B contains the */ +/* upper triangular part of the matrix B. If UPLO = 'L', */ +/* the leading N-by-N lower triangular part of B contains */ +/* the lower triangular part of the matrix B. */ + +/* On exit, if INFO <= N, the part of B containing the matrix is */ +/* overwritten by the triangular factor U or L from the Cholesky */ +/* factorization B = U**H*U or B = L*L**H. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,N). */ + +/* VL (input) REAL */ +/* VU (input) REAL */ +/* If RANGE='V', the lower and upper bounds of the interval to */ +/* be searched for eigenvalues. VL < VU. */ +/* Not referenced if RANGE = 'A' or 'I'. */ + +/* IL (input) INTEGER */ +/* IU (input) INTEGER */ +/* If RANGE='I', the indices (in ascending order) of the */ +/* smallest and largest eigenvalues to be returned. */ +/* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ +/* Not referenced if RANGE = 'A' or 'V'. */ + +/* ABSTOL (input) REAL */ +/* The absolute error tolerance for the eigenvalues. */ +/* An approximate eigenvalue is accepted as converged */ +/* when it is determined to lie in an interval [a,b] */ +/* of width less than or equal to */ + +/* ABSTOL + EPS * max( |a|,|b| ) , */ + +/* where EPS is the machine precision. If ABSTOL is less than */ +/* or equal to zero, then EPS*|T| will be used in its place, */ +/* where |T| is the 1-norm of the tridiagonal matrix obtained */ +/* by reducing A to tridiagonal form. */ + +/* Eigenvalues will be computed most accurately when ABSTOL is */ +/* set to twice the underflow threshold 2*SLAMCH('S'), not zero. */ +/* If this routine returns with INFO>0, indicating that some */ +/* eigenvectors did not converge, try setting ABSTOL to */ +/* 2*SLAMCH('S'). */ + +/* M (output) INTEGER */ +/* The total number of eigenvalues found. 0 <= M <= N. */ +/* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ + +/* W (output) REAL array, dimension (N) */ +/* The first M elements contain the selected */ +/* eigenvalues in ascending order. */ + +/* Z (output) COMPLEX array, dimension (LDZ, max(1,M)) */ +/* If JOBZ = 'N', then Z is not referenced. */ +/* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */ +/* contain the orthonormal eigenvectors of the matrix A */ +/* corresponding to the selected eigenvalues, with the i-th */ +/* column of Z holding the eigenvector associated with W(i). */ +/* The eigenvectors are normalized as follows: */ +/* if ITYPE = 1 or 2, Z**T*B*Z = I; */ +/* if ITYPE = 3, Z**T*inv(B)*Z = I. */ + +/* If an eigenvector fails to converge, then that column of Z */ +/* contains the latest approximation to the eigenvector, and the */ +/* index of the eigenvector is returned in IFAIL. */ +/* Note: the user must ensure that at least max(1,M) columns are */ +/* supplied in the array Z; if RANGE = 'V', the exact value of M */ +/* is not known in advance and an upper bound must be used. */ + +/* LDZ (input) INTEGER */ +/* The leading dimension of the array Z. LDZ >= 1, and if */ +/* JOBZ = 'V', LDZ >= max(1,N). */ + +/* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The length of the array WORK. LWORK >= max(1,2*N). */ +/* For optimal efficiency, LWORK >= (NB+1)*N, */ +/* where NB is the blocksize for CHETRD returned by ILAENV. */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the optimal size of the WORK array, returns */ +/* this value as the first entry of the WORK array, and no error */ +/* message related to LWORK is issued by XERBLA. */ + +/* RWORK (workspace) REAL array, dimension (7*N) */ + +/* IWORK (workspace) INTEGER array, dimension (5*N) */ + +/* IFAIL (output) INTEGER array, dimension (N) */ +/* If JOBZ = 'V', then if INFO = 0, the first M elements of */ +/* IFAIL are zero. If INFO > 0, then IFAIL contains the */ +/* indices of the eigenvectors that failed to converge. */ +/* If JOBZ = 'N', then IFAIL is not referenced. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: CPOTRF or CHEEVX returned an error code: */ +/* <= N: if INFO = i, CHEEVX failed to converge; */ +/* i eigenvectors failed to converge. Their indices */ +/* are stored in array IFAIL. */ +/* > N: if INFO = N + i, for 1 <= i <= N, then the leading */ +/* minor of order i of B is not positive definite. */ +/* The factorization of B could not be completed and */ +/* no eigenvalues or eigenvectors were computed. */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + --w; + z_dim1 = *ldz; + z_offset = 1 + z_dim1; + z__ -= z_offset; + --work; + --rwork; + --iwork; + --ifail; + + /* Function Body */ + wantz = lsame_(jobz, "V"); + upper = lsame_(uplo, "U"); + alleig = lsame_(range, "A"); + valeig = lsame_(range, "V"); + indeig = lsame_(range, "I"); + lquery = *lwork == -1; + + *info = 0; + if (*itype < 1 || *itype > 3) { + *info = -1; + } else if (! (wantz || lsame_(jobz, "N"))) { + *info = -2; + } else if (! (alleig || valeig || indeig)) { + *info = -3; + } else if (! (upper || lsame_(uplo, "L"))) { + *info = -4; + } else if (*n < 0) { + *info = -5; + } else if (*lda < max(1,*n)) { + *info = -7; + } else if (*ldb < max(1,*n)) { + *info = -9; + } else { + if (valeig) { + if (*n > 0 && *vu <= *vl) { + *info = -11; + } + } else if (indeig) { + if (*il < 1 || *il > max(1,*n)) { + *info = -12; + } else if (*iu < min(*n,*il) || *iu > *n) { + *info = -13; + } + } + } + if (*info == 0) { + if (*ldz < 1 || wantz && *ldz < *n) { + *info = -18; + } + } + + if (*info == 0) { + nb = ilaenv_(&c__1, "CHETRD", uplo, n, &c_n1, &c_n1, &c_n1); +/* Computing MAX */ + i__1 = 1, i__2 = (nb + 1) * *n; + lwkopt = max(i__1,i__2); + work[1].r = (real) lwkopt, work[1].i = 0.f; + +/* Computing MAX */ + i__1 = 1, i__2 = *n << 1; + if (*lwork < max(i__1,i__2) && ! lquery) { + *info = -20; + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("CHEGVX", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + *m = 0; + if (*n == 0) { + return 0; + } + +/* Form a Cholesky factorization of B. */ + + cpotrf_(uplo, n, &b[b_offset], ldb, info); + if (*info != 0) { + *info = *n + *info; + return 0; + } + +/* Transform problem to standard eigenvalue problem and solve. */ + + chegst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info); + cheevx_(jobz, range, uplo, n, &a[a_offset], lda, vl, vu, il, iu, abstol, + m, &w[1], &z__[z_offset], ldz, &work[1], lwork, &rwork[1], &iwork[ + 1], &ifail[1], info); + + if (wantz) { + +/* Backtransform eigenvectors to the original problem. */ + + if (*info > 0) { + *m = *info - 1; + } + if (*itype == 1 || *itype == 2) { + +/* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */ +/* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */ + + if (upper) { + *(unsigned char *)trans = 'N'; + } else { + *(unsigned char *)trans = 'C'; + } + + ctrsm_("Left", uplo, trans, "Non-unit", n, m, &c_b1, &b[b_offset], + ldb, &z__[z_offset], ldz); + + } else if (*itype == 3) { + +/* For B*A*x=(lambda)*x; */ +/* backtransform eigenvectors: x = L*y or U'*y */ + + if (upper) { + *(unsigned char *)trans = 'C'; + } else { + *(unsigned char *)trans = 'N'; + } + + ctrmm_("Left", uplo, trans, "Non-unit", n, m, &c_b1, &b[b_offset], + ldb, &z__[z_offset], ldz); + } + } + +/* Set WORK(1) to optimal complex workspace size. */ + + work[1].r = (real) lwkopt, work[1].i = 0.f; + + return 0; + +/* End of CHEGVX */ + +} /* chegvx_ */ |