aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/chegvx.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/chegvx.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/chegvx.c')
-rw-r--r--contrib/libs/clapack/chegvx.c394
1 files changed, 394 insertions, 0 deletions
diff --git a/contrib/libs/clapack/chegvx.c b/contrib/libs/clapack/chegvx.c
new file mode 100644
index 0000000000..89d91defd7
--- /dev/null
+++ b/contrib/libs/clapack/chegvx.c
@@ -0,0 +1,394 @@
+/* chegvx.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static complex c_b1 = {1.f,0.f};
+static integer c__1 = 1;
+static integer c_n1 = -1;
+
+/* Subroutine */ int chegvx_(integer *itype, char *jobz, char *range, char *
+ uplo, integer *n, complex *a, integer *lda, complex *b, integer *ldb,
+ real *vl, real *vu, integer *il, integer *iu, real *abstol, integer *
+ m, real *w, complex *z__, integer *ldz, complex *work, integer *lwork,
+ real *rwork, integer *iwork, integer *ifail, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, z_dim1, z_offset, i__1, i__2;
+
+ /* Local variables */
+ integer nb;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int ctrmm_(char *, char *, char *, char *,
+ integer *, integer *, complex *, complex *, integer *, complex *,
+ integer *);
+ char trans[1];
+ extern /* Subroutine */ int ctrsm_(char *, char *, char *, char *,
+ integer *, integer *, complex *, complex *, integer *, complex *,
+ integer *);
+ logical upper, wantz, alleig, indeig, valeig;
+ extern /* Subroutine */ int chegst_(integer *, char *, integer *, complex
+ *, integer *, complex *, integer *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ extern /* Subroutine */ int xerbla_(char *, integer *), cheevx_(
+ char *, char *, char *, integer *, complex *, integer *, real *,
+ real *, integer *, integer *, real *, integer *, real *, complex *
+, integer *, complex *, integer *, real *, integer *, integer *,
+ integer *), cpotrf_(char *, integer *,
+ complex *, integer *, integer *);
+ integer lwkopt;
+ logical lquery;
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CHEGVX computes selected eigenvalues, and optionally, eigenvectors */
+/* of a complex generalized Hermitian-definite eigenproblem, of the form */
+/* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and */
+/* B are assumed to be Hermitian and B is also positive definite. */
+/* Eigenvalues and eigenvectors can be selected by specifying either a */
+/* range of values or a range of indices for the desired eigenvalues. */
+
+/* Arguments */
+/* ========= */
+
+/* ITYPE (input) INTEGER */
+/* Specifies the problem type to be solved: */
+/* = 1: A*x = (lambda)*B*x */
+/* = 2: A*B*x = (lambda)*x */
+/* = 3: B*A*x = (lambda)*x */
+
+/* JOBZ (input) CHARACTER*1 */
+/* = 'N': Compute eigenvalues only; */
+/* = 'V': Compute eigenvalues and eigenvectors. */
+
+/* RANGE (input) CHARACTER*1 */
+/* = 'A': all eigenvalues will be found. */
+/* = 'V': all eigenvalues in the half-open interval (VL,VU] */
+/* will be found. */
+/* = 'I': the IL-th through IU-th eigenvalues will be found. */
+/* * */
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangles of A and B are stored; */
+/* = 'L': Lower triangles of A and B are stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrices A and B. N >= 0. */
+
+/* A (input/output) COMPLEX array, dimension (LDA, N) */
+/* On entry, the Hermitian matrix A. If UPLO = 'U', the */
+/* leading N-by-N upper triangular part of A contains the */
+/* upper triangular part of the matrix A. If UPLO = 'L', */
+/* the leading N-by-N lower triangular part of A contains */
+/* the lower triangular part of the matrix A. */
+
+/* On exit, the lower triangle (if UPLO='L') or the upper */
+/* triangle (if UPLO='U') of A, including the diagonal, is */
+/* destroyed. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* B (input/output) COMPLEX array, dimension (LDB, N) */
+/* On entry, the Hermitian matrix B. If UPLO = 'U', the */
+/* leading N-by-N upper triangular part of B contains the */
+/* upper triangular part of the matrix B. If UPLO = 'L', */
+/* the leading N-by-N lower triangular part of B contains */
+/* the lower triangular part of the matrix B. */
+
+/* On exit, if INFO <= N, the part of B containing the matrix is */
+/* overwritten by the triangular factor U or L from the Cholesky */
+/* factorization B = U**H*U or B = L*L**H. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* VL (input) REAL */
+/* VU (input) REAL */
+/* If RANGE='V', the lower and upper bounds of the interval to */
+/* be searched for eigenvalues. VL < VU. */
+/* Not referenced if RANGE = 'A' or 'I'. */
+
+/* IL (input) INTEGER */
+/* IU (input) INTEGER */
+/* If RANGE='I', the indices (in ascending order) of the */
+/* smallest and largest eigenvalues to be returned. */
+/* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
+/* Not referenced if RANGE = 'A' or 'V'. */
+
+/* ABSTOL (input) REAL */
+/* The absolute error tolerance for the eigenvalues. */
+/* An approximate eigenvalue is accepted as converged */
+/* when it is determined to lie in an interval [a,b] */
+/* of width less than or equal to */
+
+/* ABSTOL + EPS * max( |a|,|b| ) , */
+
+/* where EPS is the machine precision. If ABSTOL is less than */
+/* or equal to zero, then EPS*|T| will be used in its place, */
+/* where |T| is the 1-norm of the tridiagonal matrix obtained */
+/* by reducing A to tridiagonal form. */
+
+/* Eigenvalues will be computed most accurately when ABSTOL is */
+/* set to twice the underflow threshold 2*SLAMCH('S'), not zero. */
+/* If this routine returns with INFO>0, indicating that some */
+/* eigenvectors did not converge, try setting ABSTOL to */
+/* 2*SLAMCH('S'). */
+
+/* M (output) INTEGER */
+/* The total number of eigenvalues found. 0 <= M <= N. */
+/* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
+
+/* W (output) REAL array, dimension (N) */
+/* The first M elements contain the selected */
+/* eigenvalues in ascending order. */
+
+/* Z (output) COMPLEX array, dimension (LDZ, max(1,M)) */
+/* If JOBZ = 'N', then Z is not referenced. */
+/* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
+/* contain the orthonormal eigenvectors of the matrix A */
+/* corresponding to the selected eigenvalues, with the i-th */
+/* column of Z holding the eigenvector associated with W(i). */
+/* The eigenvectors are normalized as follows: */
+/* if ITYPE = 1 or 2, Z**T*B*Z = I; */
+/* if ITYPE = 3, Z**T*inv(B)*Z = I. */
+
+/* If an eigenvector fails to converge, then that column of Z */
+/* contains the latest approximation to the eigenvector, and the */
+/* index of the eigenvector is returned in IFAIL. */
+/* Note: the user must ensure that at least max(1,M) columns are */
+/* supplied in the array Z; if RANGE = 'V', the exact value of M */
+/* is not known in advance and an upper bound must be used. */
+
+/* LDZ (input) INTEGER */
+/* The leading dimension of the array Z. LDZ >= 1, and if */
+/* JOBZ = 'V', LDZ >= max(1,N). */
+
+/* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The length of the array WORK. LWORK >= max(1,2*N). */
+/* For optimal efficiency, LWORK >= (NB+1)*N, */
+/* where NB is the blocksize for CHETRD returned by ILAENV. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* RWORK (workspace) REAL array, dimension (7*N) */
+
+/* IWORK (workspace) INTEGER array, dimension (5*N) */
+
+/* IFAIL (output) INTEGER array, dimension (N) */
+/* If JOBZ = 'V', then if INFO = 0, the first M elements of */
+/* IFAIL are zero. If INFO > 0, then IFAIL contains the */
+/* indices of the eigenvectors that failed to converge. */
+/* If JOBZ = 'N', then IFAIL is not referenced. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: CPOTRF or CHEEVX returned an error code: */
+/* <= N: if INFO = i, CHEEVX failed to converge; */
+/* i eigenvectors failed to converge. Their indices */
+/* are stored in array IFAIL. */
+/* > N: if INFO = N + i, for 1 <= i <= N, then the leading */
+/* minor of order i of B is not positive definite. */
+/* The factorization of B could not be completed and */
+/* no eigenvalues or eigenvectors were computed. */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ --w;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+ --work;
+ --rwork;
+ --iwork;
+ --ifail;
+
+ /* Function Body */
+ wantz = lsame_(jobz, "V");
+ upper = lsame_(uplo, "U");
+ alleig = lsame_(range, "A");
+ valeig = lsame_(range, "V");
+ indeig = lsame_(range, "I");
+ lquery = *lwork == -1;
+
+ *info = 0;
+ if (*itype < 1 || *itype > 3) {
+ *info = -1;
+ } else if (! (wantz || lsame_(jobz, "N"))) {
+ *info = -2;
+ } else if (! (alleig || valeig || indeig)) {
+ *info = -3;
+ } else if (! (upper || lsame_(uplo, "L"))) {
+ *info = -4;
+ } else if (*n < 0) {
+ *info = -5;
+ } else if (*lda < max(1,*n)) {
+ *info = -7;
+ } else if (*ldb < max(1,*n)) {
+ *info = -9;
+ } else {
+ if (valeig) {
+ if (*n > 0 && *vu <= *vl) {
+ *info = -11;
+ }
+ } else if (indeig) {
+ if (*il < 1 || *il > max(1,*n)) {
+ *info = -12;
+ } else if (*iu < min(*n,*il) || *iu > *n) {
+ *info = -13;
+ }
+ }
+ }
+ if (*info == 0) {
+ if (*ldz < 1 || wantz && *ldz < *n) {
+ *info = -18;
+ }
+ }
+
+ if (*info == 0) {
+ nb = ilaenv_(&c__1, "CHETRD", uplo, n, &c_n1, &c_n1, &c_n1);
+/* Computing MAX */
+ i__1 = 1, i__2 = (nb + 1) * *n;
+ lwkopt = max(i__1,i__2);
+ work[1].r = (real) lwkopt, work[1].i = 0.f;
+
+/* Computing MAX */
+ i__1 = 1, i__2 = *n << 1;
+ if (*lwork < max(i__1,i__2) && ! lquery) {
+ *info = -20;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CHEGVX", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ *m = 0;
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Form a Cholesky factorization of B. */
+
+ cpotrf_(uplo, n, &b[b_offset], ldb, info);
+ if (*info != 0) {
+ *info = *n + *info;
+ return 0;
+ }
+
+/* Transform problem to standard eigenvalue problem and solve. */
+
+ chegst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
+ cheevx_(jobz, range, uplo, n, &a[a_offset], lda, vl, vu, il, iu, abstol,
+ m, &w[1], &z__[z_offset], ldz, &work[1], lwork, &rwork[1], &iwork[
+ 1], &ifail[1], info);
+
+ if (wantz) {
+
+/* Backtransform eigenvectors to the original problem. */
+
+ if (*info > 0) {
+ *m = *info - 1;
+ }
+ if (*itype == 1 || *itype == 2) {
+
+/* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
+/* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
+
+ if (upper) {
+ *(unsigned char *)trans = 'N';
+ } else {
+ *(unsigned char *)trans = 'C';
+ }
+
+ ctrsm_("Left", uplo, trans, "Non-unit", n, m, &c_b1, &b[b_offset],
+ ldb, &z__[z_offset], ldz);
+
+ } else if (*itype == 3) {
+
+/* For B*A*x=(lambda)*x; */
+/* backtransform eigenvectors: x = L*y or U'*y */
+
+ if (upper) {
+ *(unsigned char *)trans = 'C';
+ } else {
+ *(unsigned char *)trans = 'N';
+ }
+
+ ctrmm_("Left", uplo, trans, "Non-unit", n, m, &c_b1, &b[b_offset],
+ ldb, &z__[z_offset], ldz);
+ }
+ }
+
+/* Set WORK(1) to optimal complex workspace size. */
+
+ work[1].r = (real) lwkopt, work[1].i = 0.f;
+
+ return 0;
+
+/* End of CHEGVX */
+
+} /* chegvx_ */