aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/cheev.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cheev.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cheev.c')
-rw-r--r--contrib/libs/clapack/cheev.c284
1 files changed, 284 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cheev.c b/contrib/libs/clapack/cheev.c
new file mode 100644
index 0000000000..58e2c93ea0
--- /dev/null
+++ b/contrib/libs/clapack/cheev.c
@@ -0,0 +1,284 @@
+/* cheev.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c_n1 = -1;
+static integer c__0 = 0;
+static real c_b18 = 1.f;
+
+/* Subroutine */ int cheev_(char *jobz, char *uplo, integer *n, complex *a,
+ integer *lda, real *w, complex *work, integer *lwork, real *rwork,
+ integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+ real r__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer nb;
+ real eps;
+ integer inde;
+ real anrm;
+ integer imax;
+ real rmin, rmax, sigma;
+ extern logical lsame_(char *, char *);
+ integer iinfo;
+ extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
+ logical lower, wantz;
+ extern doublereal clanhe_(char *, char *, integer *, complex *, integer *,
+ real *);
+ integer iscale;
+ extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *,
+ real *, integer *, integer *, complex *, integer *, integer *);
+ extern doublereal slamch_(char *);
+ extern /* Subroutine */ int chetrd_(char *, integer *, complex *, integer
+ *, real *, real *, complex *, complex *, integer *, integer *);
+ real safmin;
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ real bignum;
+ integer indtau, indwrk;
+ extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *,
+ complex *, integer *, real *, integer *), cungtr_(char *,
+ integer *, complex *, integer *, complex *, complex *, integer *,
+ integer *), ssterf_(integer *, real *, real *, integer *);
+ integer llwork;
+ real smlnum;
+ integer lwkopt;
+ logical lquery;
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CHEEV computes all eigenvalues and, optionally, eigenvectors of a */
+/* complex Hermitian matrix A. */
+
+/* Arguments */
+/* ========= */
+
+/* JOBZ (input) CHARACTER*1 */
+/* = 'N': Compute eigenvalues only; */
+/* = 'V': Compute eigenvalues and eigenvectors. */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangle of A is stored; */
+/* = 'L': Lower triangle of A is stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* A (input/output) COMPLEX array, dimension (LDA, N) */
+/* On entry, the Hermitian matrix A. If UPLO = 'U', the */
+/* leading N-by-N upper triangular part of A contains the */
+/* upper triangular part of the matrix A. If UPLO = 'L', */
+/* the leading N-by-N lower triangular part of A contains */
+/* the lower triangular part of the matrix A. */
+/* On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
+/* orthonormal eigenvectors of the matrix A. */
+/* If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') */
+/* or the upper triangle (if UPLO='U') of A, including the */
+/* diagonal, is destroyed. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* W (output) REAL array, dimension (N) */
+/* If INFO = 0, the eigenvalues in ascending order. */
+
+/* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The length of the array WORK. LWORK >= max(1,2*N-1). */
+/* For optimal efficiency, LWORK >= (NB+1)*N, */
+/* where NB is the blocksize for CHETRD returned by ILAENV. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* RWORK (workspace) REAL array, dimension (max(1, 3*N-2)) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, the algorithm failed to converge; i */
+/* off-diagonal elements of an intermediate tridiagonal */
+/* form did not converge to zero. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --w;
+ --work;
+ --rwork;
+
+ /* Function Body */
+ wantz = lsame_(jobz, "V");
+ lower = lsame_(uplo, "L");
+ lquery = *lwork == -1;
+
+ *info = 0;
+ if (! (wantz || lsame_(jobz, "N"))) {
+ *info = -1;
+ } else if (! (lower || lsame_(uplo, "U"))) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*lda < max(1,*n)) {
+ *info = -5;
+ }
+
+ if (*info == 0) {
+ nb = ilaenv_(&c__1, "CHETRD", uplo, n, &c_n1, &c_n1, &c_n1);
+/* Computing MAX */
+ i__1 = 1, i__2 = (nb + 1) * *n;
+ lwkopt = max(i__1,i__2);
+ work[1].r = (real) lwkopt, work[1].i = 0.f;
+
+/* Computing MAX */
+ i__1 = 1, i__2 = (*n << 1) - 1;
+ if (*lwork < max(i__1,i__2) && ! lquery) {
+ *info = -8;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CHEEV ", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ if (*n == 1) {
+ i__1 = a_dim1 + 1;
+ w[1] = a[i__1].r;
+ work[1].r = 1.f, work[1].i = 0.f;
+ if (wantz) {
+ i__1 = a_dim1 + 1;
+ a[i__1].r = 1.f, a[i__1].i = 0.f;
+ }
+ return 0;
+ }
+
+/* Get machine constants. */
+
+ safmin = slamch_("Safe minimum");
+ eps = slamch_("Precision");
+ smlnum = safmin / eps;
+ bignum = 1.f / smlnum;
+ rmin = sqrt(smlnum);
+ rmax = sqrt(bignum);
+
+/* Scale matrix to allowable range, if necessary. */
+
+ anrm = clanhe_("M", uplo, n, &a[a_offset], lda, &rwork[1]);
+ iscale = 0;
+ if (anrm > 0.f && anrm < rmin) {
+ iscale = 1;
+ sigma = rmin / anrm;
+ } else if (anrm > rmax) {
+ iscale = 1;
+ sigma = rmax / anrm;
+ }
+ if (iscale == 1) {
+ clascl_(uplo, &c__0, &c__0, &c_b18, &sigma, n, n, &a[a_offset], lda,
+ info);
+ }
+
+/* Call CHETRD to reduce Hermitian matrix to tridiagonal form. */
+
+ inde = 1;
+ indtau = 1;
+ indwrk = indtau + *n;
+ llwork = *lwork - indwrk + 1;
+ chetrd_(uplo, n, &a[a_offset], lda, &w[1], &rwork[inde], &work[indtau], &
+ work[indwrk], &llwork, &iinfo);
+
+/* For eigenvalues only, call SSTERF. For eigenvectors, first call */
+/* CUNGTR to generate the unitary matrix, then call CSTEQR. */
+
+ if (! wantz) {
+ ssterf_(n, &w[1], &rwork[inde], info);
+ } else {
+ cungtr_(uplo, n, &a[a_offset], lda, &work[indtau], &work[indwrk], &
+ llwork, &iinfo);
+ indwrk = inde + *n;
+ csteqr_(jobz, n, &w[1], &rwork[inde], &a[a_offset], lda, &rwork[
+ indwrk], info);
+ }
+
+/* If matrix was scaled, then rescale eigenvalues appropriately. */
+
+ if (iscale == 1) {
+ if (*info == 0) {
+ imax = *n;
+ } else {
+ imax = *info - 1;
+ }
+ r__1 = 1.f / sigma;
+ sscal_(&imax, &r__1, &w[1], &c__1);
+ }
+
+/* Set WORK(1) to optimal complex workspace size. */
+
+ work[1].r = (real) lwkopt, work[1].i = 0.f;
+
+ return 0;
+
+/* End of CHEEV */
+
+} /* cheev_ */