diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cheev.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cheev.c')
-rw-r--r-- | contrib/libs/clapack/cheev.c | 284 |
1 files changed, 284 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cheev.c b/contrib/libs/clapack/cheev.c new file mode 100644 index 0000000000..58e2c93ea0 --- /dev/null +++ b/contrib/libs/clapack/cheev.c @@ -0,0 +1,284 @@ +/* cheev.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c_n1 = -1; +static integer c__0 = 0; +static real c_b18 = 1.f; + +/* Subroutine */ int cheev_(char *jobz, char *uplo, integer *n, complex *a, + integer *lda, real *w, complex *work, integer *lwork, real *rwork, + integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + real r__1; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + integer nb; + real eps; + integer inde; + real anrm; + integer imax; + real rmin, rmax, sigma; + extern logical lsame_(char *, char *); + integer iinfo; + extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); + logical lower, wantz; + extern doublereal clanhe_(char *, char *, integer *, complex *, integer *, + real *); + integer iscale; + extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *, + real *, integer *, integer *, complex *, integer *, integer *); + extern doublereal slamch_(char *); + extern /* Subroutine */ int chetrd_(char *, integer *, complex *, integer + *, real *, real *, complex *, complex *, integer *, integer *); + real safmin; + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + extern /* Subroutine */ int xerbla_(char *, integer *); + real bignum; + integer indtau, indwrk; + extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *, + complex *, integer *, real *, integer *), cungtr_(char *, + integer *, complex *, integer *, complex *, complex *, integer *, + integer *), ssterf_(integer *, real *, real *, integer *); + integer llwork; + real smlnum; + integer lwkopt; + logical lquery; + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CHEEV computes all eigenvalues and, optionally, eigenvectors of a */ +/* complex Hermitian matrix A. */ + +/* Arguments */ +/* ========= */ + +/* JOBZ (input) CHARACTER*1 */ +/* = 'N': Compute eigenvalues only; */ +/* = 'V': Compute eigenvalues and eigenvectors. */ + +/* UPLO (input) CHARACTER*1 */ +/* = 'U': Upper triangle of A is stored; */ +/* = 'L': Lower triangle of A is stored. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* A (input/output) COMPLEX array, dimension (LDA, N) */ +/* On entry, the Hermitian matrix A. If UPLO = 'U', the */ +/* leading N-by-N upper triangular part of A contains the */ +/* upper triangular part of the matrix A. If UPLO = 'L', */ +/* the leading N-by-N lower triangular part of A contains */ +/* the lower triangular part of the matrix A. */ +/* On exit, if JOBZ = 'V', then if INFO = 0, A contains the */ +/* orthonormal eigenvectors of the matrix A. */ +/* If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') */ +/* or the upper triangle (if UPLO='U') of A, including the */ +/* diagonal, is destroyed. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* W (output) REAL array, dimension (N) */ +/* If INFO = 0, the eigenvalues in ascending order. */ + +/* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The length of the array WORK. LWORK >= max(1,2*N-1). */ +/* For optimal efficiency, LWORK >= (NB+1)*N, */ +/* where NB is the blocksize for CHETRD returned by ILAENV. */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the optimal size of the WORK array, returns */ +/* this value as the first entry of the WORK array, and no error */ +/* message related to LWORK is issued by XERBLA. */ + +/* RWORK (workspace) REAL array, dimension (max(1, 3*N-2)) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: if INFO = i, the algorithm failed to converge; i */ +/* off-diagonal elements of an intermediate tridiagonal */ +/* form did not converge to zero. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --w; + --work; + --rwork; + + /* Function Body */ + wantz = lsame_(jobz, "V"); + lower = lsame_(uplo, "L"); + lquery = *lwork == -1; + + *info = 0; + if (! (wantz || lsame_(jobz, "N"))) { + *info = -1; + } else if (! (lower || lsame_(uplo, "U"))) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*lda < max(1,*n)) { + *info = -5; + } + + if (*info == 0) { + nb = ilaenv_(&c__1, "CHETRD", uplo, n, &c_n1, &c_n1, &c_n1); +/* Computing MAX */ + i__1 = 1, i__2 = (nb + 1) * *n; + lwkopt = max(i__1,i__2); + work[1].r = (real) lwkopt, work[1].i = 0.f; + +/* Computing MAX */ + i__1 = 1, i__2 = (*n << 1) - 1; + if (*lwork < max(i__1,i__2) && ! lquery) { + *info = -8; + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("CHEEV ", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + + if (*n == 1) { + i__1 = a_dim1 + 1; + w[1] = a[i__1].r; + work[1].r = 1.f, work[1].i = 0.f; + if (wantz) { + i__1 = a_dim1 + 1; + a[i__1].r = 1.f, a[i__1].i = 0.f; + } + return 0; + } + +/* Get machine constants. */ + + safmin = slamch_("Safe minimum"); + eps = slamch_("Precision"); + smlnum = safmin / eps; + bignum = 1.f / smlnum; + rmin = sqrt(smlnum); + rmax = sqrt(bignum); + +/* Scale matrix to allowable range, if necessary. */ + + anrm = clanhe_("M", uplo, n, &a[a_offset], lda, &rwork[1]); + iscale = 0; + if (anrm > 0.f && anrm < rmin) { + iscale = 1; + sigma = rmin / anrm; + } else if (anrm > rmax) { + iscale = 1; + sigma = rmax / anrm; + } + if (iscale == 1) { + clascl_(uplo, &c__0, &c__0, &c_b18, &sigma, n, n, &a[a_offset], lda, + info); + } + +/* Call CHETRD to reduce Hermitian matrix to tridiagonal form. */ + + inde = 1; + indtau = 1; + indwrk = indtau + *n; + llwork = *lwork - indwrk + 1; + chetrd_(uplo, n, &a[a_offset], lda, &w[1], &rwork[inde], &work[indtau], & + work[indwrk], &llwork, &iinfo); + +/* For eigenvalues only, call SSTERF. For eigenvectors, first call */ +/* CUNGTR to generate the unitary matrix, then call CSTEQR. */ + + if (! wantz) { + ssterf_(n, &w[1], &rwork[inde], info); + } else { + cungtr_(uplo, n, &a[a_offset], lda, &work[indtau], &work[indwrk], & + llwork, &iinfo); + indwrk = inde + *n; + csteqr_(jobz, n, &w[1], &rwork[inde], &a[a_offset], lda, &rwork[ + indwrk], info); + } + +/* If matrix was scaled, then rescale eigenvalues appropriately. */ + + if (iscale == 1) { + if (*info == 0) { + imax = *n; + } else { + imax = *info - 1; + } + r__1 = 1.f / sigma; + sscal_(&imax, &r__1, &w[1], &c__1); + } + +/* Set WORK(1) to optimal complex workspace size. */ + + work[1].r = (real) lwkopt, work[1].i = 0.f; + + return 0; + +/* End of CHEEV */ + +} /* cheev_ */ |