aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/chbev.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/chbev.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/chbev.c')
-rw-r--r--contrib/libs/clapack/chbev.c270
1 files changed, 270 insertions, 0 deletions
diff --git a/contrib/libs/clapack/chbev.c b/contrib/libs/clapack/chbev.c
new file mode 100644
index 0000000000..45c3ef8db9
--- /dev/null
+++ b/contrib/libs/clapack/chbev.c
@@ -0,0 +1,270 @@
+/* chbev.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static real c_b11 = 1.f;
+static integer c__1 = 1;
+
+/* Subroutine */ int chbev_(char *jobz, char *uplo, integer *n, integer *kd,
+ complex *ab, integer *ldab, real *w, complex *z__, integer *ldz,
+ complex *work, real *rwork, integer *info)
+{
+ /* System generated locals */
+ integer ab_dim1, ab_offset, z_dim1, z_offset, i__1;
+ real r__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ real eps;
+ integer inde;
+ real anrm;
+ integer imax;
+ real rmin, rmax, sigma;
+ extern logical lsame_(char *, char *);
+ integer iinfo;
+ extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
+ logical lower, wantz;
+ extern doublereal clanhb_(char *, char *, integer *, integer *, complex *,
+ integer *, real *);
+ integer iscale;
+ extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *,
+ real *, integer *, integer *, complex *, integer *, integer *), chbtrd_(char *, char *, integer *, integer *, complex *,
+ integer *, real *, real *, complex *, integer *, complex *,
+ integer *);
+ extern doublereal slamch_(char *);
+ real safmin;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ real bignum;
+ integer indrwk;
+ extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *,
+ complex *, integer *, real *, integer *), ssterf_(integer
+ *, real *, real *, integer *);
+ real smlnum;
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CHBEV computes all the eigenvalues and, optionally, eigenvectors of */
+/* a complex Hermitian band matrix A. */
+
+/* Arguments */
+/* ========= */
+
+/* JOBZ (input) CHARACTER*1 */
+/* = 'N': Compute eigenvalues only; */
+/* = 'V': Compute eigenvalues and eigenvectors. */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangle of A is stored; */
+/* = 'L': Lower triangle of A is stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* KD (input) INTEGER */
+/* The number of superdiagonals of the matrix A if UPLO = 'U', */
+/* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
+
+/* AB (input/output) COMPLEX array, dimension (LDAB, N) */
+/* On entry, the upper or lower triangle of the Hermitian band */
+/* matrix A, stored in the first KD+1 rows of the array. The */
+/* j-th column of A is stored in the j-th column of the array AB */
+/* as follows: */
+/* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
+/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
+
+/* On exit, AB is overwritten by values generated during the */
+/* reduction to tridiagonal form. If UPLO = 'U', the first */
+/* superdiagonal and the diagonal of the tridiagonal matrix T */
+/* are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */
+/* the diagonal and first subdiagonal of T are returned in the */
+/* first two rows of AB. */
+
+/* LDAB (input) INTEGER */
+/* The leading dimension of the array AB. LDAB >= KD + 1. */
+
+/* W (output) REAL array, dimension (N) */
+/* If INFO = 0, the eigenvalues in ascending order. */
+
+/* Z (output) COMPLEX array, dimension (LDZ, N) */
+/* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
+/* eigenvectors of the matrix A, with the i-th column of Z */
+/* holding the eigenvector associated with W(i). */
+/* If JOBZ = 'N', then Z is not referenced. */
+
+/* LDZ (input) INTEGER */
+/* The leading dimension of the array Z. LDZ >= 1, and if */
+/* JOBZ = 'V', LDZ >= max(1,N). */
+
+/* WORK (workspace) COMPLEX array, dimension (N) */
+
+/* RWORK (workspace) REAL array, dimension (max(1,3*N-2)) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit. */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+/* > 0: if INFO = i, the algorithm failed to converge; i */
+/* off-diagonal elements of an intermediate tridiagonal */
+/* form did not converge to zero. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ ab_dim1 = *ldab;
+ ab_offset = 1 + ab_dim1;
+ ab -= ab_offset;
+ --w;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+ --work;
+ --rwork;
+
+ /* Function Body */
+ wantz = lsame_(jobz, "V");
+ lower = lsame_(uplo, "L");
+
+ *info = 0;
+ if (! (wantz || lsame_(jobz, "N"))) {
+ *info = -1;
+ } else if (! (lower || lsame_(uplo, "U"))) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*kd < 0) {
+ *info = -4;
+ } else if (*ldab < *kd + 1) {
+ *info = -6;
+ } else if (*ldz < 1 || wantz && *ldz < *n) {
+ *info = -9;
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CHBEV ", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ if (*n == 1) {
+ if (lower) {
+ i__1 = ab_dim1 + 1;
+ w[1] = ab[i__1].r;
+ } else {
+ i__1 = *kd + 1 + ab_dim1;
+ w[1] = ab[i__1].r;
+ }
+ if (wantz) {
+ i__1 = z_dim1 + 1;
+ z__[i__1].r = 1.f, z__[i__1].i = 0.f;
+ }
+ return 0;
+ }
+
+/* Get machine constants. */
+
+ safmin = slamch_("Safe minimum");
+ eps = slamch_("Precision");
+ smlnum = safmin / eps;
+ bignum = 1.f / smlnum;
+ rmin = sqrt(smlnum);
+ rmax = sqrt(bignum);
+
+/* Scale matrix to allowable range, if necessary. */
+
+ anrm = clanhb_("M", uplo, n, kd, &ab[ab_offset], ldab, &rwork[1]);
+ iscale = 0;
+ if (anrm > 0.f && anrm < rmin) {
+ iscale = 1;
+ sigma = rmin / anrm;
+ } else if (anrm > rmax) {
+ iscale = 1;
+ sigma = rmax / anrm;
+ }
+ if (iscale == 1) {
+ if (lower) {
+ clascl_("B", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab,
+ info);
+ } else {
+ clascl_("Q", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab,
+ info);
+ }
+ }
+
+/* Call CHBTRD to reduce Hermitian band matrix to tridiagonal form. */
+
+ inde = 1;
+ chbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &w[1], &rwork[inde], &
+ z__[z_offset], ldz, &work[1], &iinfo);
+
+/* For eigenvalues only, call SSTERF. For eigenvectors, call CSTEQR. */
+
+ if (! wantz) {
+ ssterf_(n, &w[1], &rwork[inde], info);
+ } else {
+ indrwk = inde + *n;
+ csteqr_(jobz, n, &w[1], &rwork[inde], &z__[z_offset], ldz, &rwork[
+ indrwk], info);
+ }
+
+/* If matrix was scaled, then rescale eigenvalues appropriately. */
+
+ if (iscale == 1) {
+ if (*info == 0) {
+ imax = *n;
+ } else {
+ imax = *info - 1;
+ }
+ r__1 = 1.f / sigma;
+ sscal_(&imax, &r__1, &w[1], &c__1);
+ }
+
+ return 0;
+
+/* End of CHBEV */
+
+} /* chbev_ */