diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/chbev.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/chbev.c')
-rw-r--r-- | contrib/libs/clapack/chbev.c | 270 |
1 files changed, 270 insertions, 0 deletions
diff --git a/contrib/libs/clapack/chbev.c b/contrib/libs/clapack/chbev.c new file mode 100644 index 0000000000..45c3ef8db9 --- /dev/null +++ b/contrib/libs/clapack/chbev.c @@ -0,0 +1,270 @@ +/* chbev.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static real c_b11 = 1.f; +static integer c__1 = 1; + +/* Subroutine */ int chbev_(char *jobz, char *uplo, integer *n, integer *kd, + complex *ab, integer *ldab, real *w, complex *z__, integer *ldz, + complex *work, real *rwork, integer *info) +{ + /* System generated locals */ + integer ab_dim1, ab_offset, z_dim1, z_offset, i__1; + real r__1; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + real eps; + integer inde; + real anrm; + integer imax; + real rmin, rmax, sigma; + extern logical lsame_(char *, char *); + integer iinfo; + extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); + logical lower, wantz; + extern doublereal clanhb_(char *, char *, integer *, integer *, complex *, + integer *, real *); + integer iscale; + extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *, + real *, integer *, integer *, complex *, integer *, integer *), chbtrd_(char *, char *, integer *, integer *, complex *, + integer *, real *, real *, complex *, integer *, complex *, + integer *); + extern doublereal slamch_(char *); + real safmin; + extern /* Subroutine */ int xerbla_(char *, integer *); + real bignum; + integer indrwk; + extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *, + complex *, integer *, real *, integer *), ssterf_(integer + *, real *, real *, integer *); + real smlnum; + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CHBEV computes all the eigenvalues and, optionally, eigenvectors of */ +/* a complex Hermitian band matrix A. */ + +/* Arguments */ +/* ========= */ + +/* JOBZ (input) CHARACTER*1 */ +/* = 'N': Compute eigenvalues only; */ +/* = 'V': Compute eigenvalues and eigenvectors. */ + +/* UPLO (input) CHARACTER*1 */ +/* = 'U': Upper triangle of A is stored; */ +/* = 'L': Lower triangle of A is stored. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* KD (input) INTEGER */ +/* The number of superdiagonals of the matrix A if UPLO = 'U', */ +/* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */ + +/* AB (input/output) COMPLEX array, dimension (LDAB, N) */ +/* On entry, the upper or lower triangle of the Hermitian band */ +/* matrix A, stored in the first KD+1 rows of the array. The */ +/* j-th column of A is stored in the j-th column of the array AB */ +/* as follows: */ +/* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ +/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ + +/* On exit, AB is overwritten by values generated during the */ +/* reduction to tridiagonal form. If UPLO = 'U', the first */ +/* superdiagonal and the diagonal of the tridiagonal matrix T */ +/* are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */ +/* the diagonal and first subdiagonal of T are returned in the */ +/* first two rows of AB. */ + +/* LDAB (input) INTEGER */ +/* The leading dimension of the array AB. LDAB >= KD + 1. */ + +/* W (output) REAL array, dimension (N) */ +/* If INFO = 0, the eigenvalues in ascending order. */ + +/* Z (output) COMPLEX array, dimension (LDZ, N) */ +/* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */ +/* eigenvectors of the matrix A, with the i-th column of Z */ +/* holding the eigenvector associated with W(i). */ +/* If JOBZ = 'N', then Z is not referenced. */ + +/* LDZ (input) INTEGER */ +/* The leading dimension of the array Z. LDZ >= 1, and if */ +/* JOBZ = 'V', LDZ >= max(1,N). */ + +/* WORK (workspace) COMPLEX array, dimension (N) */ + +/* RWORK (workspace) REAL array, dimension (max(1,3*N-2)) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit. */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ +/* > 0: if INFO = i, the algorithm failed to converge; i */ +/* off-diagonal elements of an intermediate tridiagonal */ +/* form did not converge to zero. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + ab_dim1 = *ldab; + ab_offset = 1 + ab_dim1; + ab -= ab_offset; + --w; + z_dim1 = *ldz; + z_offset = 1 + z_dim1; + z__ -= z_offset; + --work; + --rwork; + + /* Function Body */ + wantz = lsame_(jobz, "V"); + lower = lsame_(uplo, "L"); + + *info = 0; + if (! (wantz || lsame_(jobz, "N"))) { + *info = -1; + } else if (! (lower || lsame_(uplo, "U"))) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*kd < 0) { + *info = -4; + } else if (*ldab < *kd + 1) { + *info = -6; + } else if (*ldz < 1 || wantz && *ldz < *n) { + *info = -9; + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("CHBEV ", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + + if (*n == 1) { + if (lower) { + i__1 = ab_dim1 + 1; + w[1] = ab[i__1].r; + } else { + i__1 = *kd + 1 + ab_dim1; + w[1] = ab[i__1].r; + } + if (wantz) { + i__1 = z_dim1 + 1; + z__[i__1].r = 1.f, z__[i__1].i = 0.f; + } + return 0; + } + +/* Get machine constants. */ + + safmin = slamch_("Safe minimum"); + eps = slamch_("Precision"); + smlnum = safmin / eps; + bignum = 1.f / smlnum; + rmin = sqrt(smlnum); + rmax = sqrt(bignum); + +/* Scale matrix to allowable range, if necessary. */ + + anrm = clanhb_("M", uplo, n, kd, &ab[ab_offset], ldab, &rwork[1]); + iscale = 0; + if (anrm > 0.f && anrm < rmin) { + iscale = 1; + sigma = rmin / anrm; + } else if (anrm > rmax) { + iscale = 1; + sigma = rmax / anrm; + } + if (iscale == 1) { + if (lower) { + clascl_("B", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab, + info); + } else { + clascl_("Q", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab, + info); + } + } + +/* Call CHBTRD to reduce Hermitian band matrix to tridiagonal form. */ + + inde = 1; + chbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &w[1], &rwork[inde], & + z__[z_offset], ldz, &work[1], &iinfo); + +/* For eigenvalues only, call SSTERF. For eigenvectors, call CSTEQR. */ + + if (! wantz) { + ssterf_(n, &w[1], &rwork[inde], info); + } else { + indrwk = inde + *n; + csteqr_(jobz, n, &w[1], &rwork[inde], &z__[z_offset], ldz, &rwork[ + indrwk], info); + } + +/* If matrix was scaled, then rescale eigenvalues appropriately. */ + + if (iscale == 1) { + if (*info == 0) { + imax = *n; + } else { + imax = *info - 1; + } + r__1 = 1.f / sigma; + sscal_(&imax, &r__1, &w[1], &c__1); + } + + return 0; + +/* End of CHBEV */ + +} /* chbev_ */ |