diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cgtsvx.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cgtsvx.c')
-rw-r--r-- | contrib/libs/clapack/cgtsvx.c | 347 |
1 files changed, 347 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cgtsvx.c b/contrib/libs/clapack/cgtsvx.c new file mode 100644 index 0000000000..9e99fb002e --- /dev/null +++ b/contrib/libs/clapack/cgtsvx.c @@ -0,0 +1,347 @@ +/* cgtsvx.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; + +/* Subroutine */ int cgtsvx_(char *fact, char *trans, integer *n, integer * + nrhs, complex *dl, complex *d__, complex *du, complex *dlf, complex * + df, complex *duf, complex *du2, integer *ipiv, complex *b, integer * + ldb, complex *x, integer *ldx, real *rcond, real *ferr, real *berr, + complex *work, real *rwork, integer *info) +{ + /* System generated locals */ + integer b_dim1, b_offset, x_dim1, x_offset, i__1; + + /* Local variables */ + char norm[1]; + extern logical lsame_(char *, char *); + real anorm; + extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, + complex *, integer *); + extern doublereal slamch_(char *), clangt_(char *, integer *, + complex *, complex *, complex *); + logical nofact; + extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex + *, integer *, complex *, integer *), cgtcon_(char *, + integer *, complex *, complex *, complex *, complex *, integer *, + real *, real *, complex *, integer *), xerbla_(char *, + integer *), cgtrfs_(char *, integer *, integer *, complex + *, complex *, complex *, complex *, complex *, complex *, complex + *, integer *, complex *, integer *, complex *, integer *, real *, + real *, complex *, real *, integer *), cgttrf_(integer *, + complex *, complex *, complex *, complex *, integer *, integer *); + logical notran; + extern /* Subroutine */ int cgttrs_(char *, integer *, integer *, complex + *, complex *, complex *, complex *, integer *, complex *, integer + *, integer *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CGTSVX uses the LU factorization to compute the solution to a complex */ +/* system of linear equations A * X = B, A**T * X = B, or A**H * X = B, */ +/* where A is a tridiagonal matrix of order N and X and B are N-by-NRHS */ +/* matrices. */ + +/* Error bounds on the solution and a condition estimate are also */ +/* provided. */ + +/* Description */ +/* =========== */ + +/* The following steps are performed: */ + +/* 1. If FACT = 'N', the LU decomposition is used to factor the matrix A */ +/* as A = L * U, where L is a product of permutation and unit lower */ +/* bidiagonal matrices and U is upper triangular with nonzeros in */ +/* only the main diagonal and first two superdiagonals. */ + +/* 2. If some U(i,i)=0, so that U is exactly singular, then the routine */ +/* returns with INFO = i. Otherwise, the factored form of A is used */ +/* to estimate the condition number of the matrix A. If the */ +/* reciprocal of the condition number is less than machine precision, */ +/* INFO = N+1 is returned as a warning, but the routine still goes on */ +/* to solve for X and compute error bounds as described below. */ + +/* 3. The system of equations is solved for X using the factored form */ +/* of A. */ + +/* 4. Iterative refinement is applied to improve the computed solution */ +/* matrix and calculate error bounds and backward error estimates */ +/* for it. */ + +/* Arguments */ +/* ========= */ + +/* FACT (input) CHARACTER*1 */ +/* Specifies whether or not the factored form of A has been */ +/* supplied on entry. */ +/* = 'F': DLF, DF, DUF, DU2, and IPIV contain the factored form */ +/* of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV will not */ +/* be modified. */ +/* = 'N': The matrix will be copied to DLF, DF, and DUF */ +/* and factored. */ + +/* TRANS (input) CHARACTER*1 */ +/* Specifies the form of the system of equations: */ +/* = 'N': A * X = B (No transpose) */ +/* = 'T': A**T * X = B (Transpose) */ +/* = 'C': A**H * X = B (Conjugate transpose) */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* NRHS (input) INTEGER */ +/* The number of right hand sides, i.e., the number of columns */ +/* of the matrix B. NRHS >= 0. */ + +/* DL (input) COMPLEX array, dimension (N-1) */ +/* The (n-1) subdiagonal elements of A. */ + +/* D (input) COMPLEX array, dimension (N) */ +/* The n diagonal elements of A. */ + +/* DU (input) COMPLEX array, dimension (N-1) */ +/* The (n-1) superdiagonal elements of A. */ + +/* DLF (input or output) COMPLEX array, dimension (N-1) */ +/* If FACT = 'F', then DLF is an input argument and on entry */ +/* contains the (n-1) multipliers that define the matrix L from */ +/* the LU factorization of A as computed by CGTTRF. */ + +/* If FACT = 'N', then DLF is an output argument and on exit */ +/* contains the (n-1) multipliers that define the matrix L from */ +/* the LU factorization of A. */ + +/* DF (input or output) COMPLEX array, dimension (N) */ +/* If FACT = 'F', then DF is an input argument and on entry */ +/* contains the n diagonal elements of the upper triangular */ +/* matrix U from the LU factorization of A. */ + +/* If FACT = 'N', then DF is an output argument and on exit */ +/* contains the n diagonal elements of the upper triangular */ +/* matrix U from the LU factorization of A. */ + +/* DUF (input or output) COMPLEX array, dimension (N-1) */ +/* If FACT = 'F', then DUF is an input argument and on entry */ +/* contains the (n-1) elements of the first superdiagonal of U. */ + +/* If FACT = 'N', then DUF is an output argument and on exit */ +/* contains the (n-1) elements of the first superdiagonal of U. */ + +/* DU2 (input or output) COMPLEX array, dimension (N-2) */ +/* If FACT = 'F', then DU2 is an input argument and on entry */ +/* contains the (n-2) elements of the second superdiagonal of */ +/* U. */ + +/* If FACT = 'N', then DU2 is an output argument and on exit */ +/* contains the (n-2) elements of the second superdiagonal of */ +/* U. */ + +/* IPIV (input or output) INTEGER array, dimension (N) */ +/* If FACT = 'F', then IPIV is an input argument and on entry */ +/* contains the pivot indices from the LU factorization of A as */ +/* computed by CGTTRF. */ + +/* If FACT = 'N', then IPIV is an output argument and on exit */ +/* contains the pivot indices from the LU factorization of A; */ +/* row i of the matrix was interchanged with row IPIV(i). */ +/* IPIV(i) will always be either i or i+1; IPIV(i) = i indicates */ +/* a row interchange was not required. */ + +/* B (input) COMPLEX array, dimension (LDB,NRHS) */ +/* The N-by-NRHS right hand side matrix B. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,N). */ + +/* X (output) COMPLEX array, dimension (LDX,NRHS) */ +/* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */ + +/* LDX (input) INTEGER */ +/* The leading dimension of the array X. LDX >= max(1,N). */ + +/* RCOND (output) REAL */ +/* The estimate of the reciprocal condition number of the matrix */ +/* A. If RCOND is less than the machine precision (in */ +/* particular, if RCOND = 0), the matrix is singular to working */ +/* precision. This condition is indicated by a return code of */ +/* INFO > 0. */ + +/* FERR (output) REAL array, dimension (NRHS) */ +/* The estimated forward error bound for each solution vector */ +/* X(j) (the j-th column of the solution matrix X). */ +/* If XTRUE is the true solution corresponding to X(j), FERR(j) */ +/* is an estimated upper bound for the magnitude of the largest */ +/* element in (X(j) - XTRUE) divided by the magnitude of the */ +/* largest element in X(j). The estimate is as reliable as */ +/* the estimate for RCOND, and is almost always a slight */ +/* overestimate of the true error. */ + +/* BERR (output) REAL array, dimension (NRHS) */ +/* The componentwise relative backward error of each solution */ +/* vector X(j) (i.e., the smallest relative change in */ +/* any element of A or B that makes X(j) an exact solution). */ + +/* WORK (workspace) COMPLEX array, dimension (2*N) */ + +/* RWORK (workspace) REAL array, dimension (N) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: if INFO = i, and i is */ +/* <= N: U(i,i) is exactly zero. The factorization */ +/* has not been completed unless i = N, but the */ +/* factor U is exactly singular, so the solution */ +/* and error bounds could not be computed. */ +/* RCOND = 0 is returned. */ +/* = N+1: U is nonsingular, but RCOND is less than machine */ +/* precision, meaning that the matrix is singular */ +/* to working precision. Nevertheless, the */ +/* solution and error bounds are computed because */ +/* there are a number of situations where the */ +/* computed solution can be more accurate than the */ +/* value of RCOND would suggest. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + + /* Parameter adjustments */ + --dl; + --d__; + --du; + --dlf; + --df; + --duf; + --du2; + --ipiv; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + x_dim1 = *ldx; + x_offset = 1 + x_dim1; + x -= x_offset; + --ferr; + --berr; + --work; + --rwork; + + /* Function Body */ + *info = 0; + nofact = lsame_(fact, "N"); + notran = lsame_(trans, "N"); + if (! nofact && ! lsame_(fact, "F")) { + *info = -1; + } else if (! notran && ! lsame_(trans, "T") && ! + lsame_(trans, "C")) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*nrhs < 0) { + *info = -4; + } else if (*ldb < max(1,*n)) { + *info = -14; + } else if (*ldx < max(1,*n)) { + *info = -16; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGTSVX", &i__1); + return 0; + } + + if (nofact) { + +/* Compute the LU factorization of A. */ + + ccopy_(n, &d__[1], &c__1, &df[1], &c__1); + if (*n > 1) { + i__1 = *n - 1; + ccopy_(&i__1, &dl[1], &c__1, &dlf[1], &c__1); + i__1 = *n - 1; + ccopy_(&i__1, &du[1], &c__1, &duf[1], &c__1); + } + cgttrf_(n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], info); + +/* Return if INFO is non-zero. */ + + if (*info > 0) { + *rcond = 0.f; + return 0; + } + } + +/* Compute the norm of the matrix A. */ + + if (notran) { + *(unsigned char *)norm = '1'; + } else { + *(unsigned char *)norm = 'I'; + } + anorm = clangt_(norm, n, &dl[1], &d__[1], &du[1]); + +/* Compute the reciprocal of the condition number of A. */ + + cgtcon_(norm, n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &anorm, + rcond, &work[1], info); + +/* Compute the solution vectors X. */ + + clacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx); + cgttrs_(trans, n, nrhs, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &x[ + x_offset], ldx, info); + +/* Use iterative refinement to improve the computed solutions and */ +/* compute error bounds and backward error estimates for them. */ + + cgtrfs_(trans, n, nrhs, &dl[1], &d__[1], &du[1], &dlf[1], &df[1], &duf[1], + &du2[1], &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1] +, &berr[1], &work[1], &rwork[1], info); + +/* Set INFO = N+1 if the matrix is singular to working precision. */ + + if (*rcond < slamch_("Epsilon")) { + *info = *n + 1; + } + + return 0; + +/* End of CGTSVX */ + +} /* cgtsvx_ */ |