aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/cggrqf.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cggrqf.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cggrqf.c')
-rw-r--r--contrib/libs/clapack/cggrqf.c269
1 files changed, 269 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cggrqf.c b/contrib/libs/clapack/cggrqf.c
new file mode 100644
index 0000000000..2653aeac19
--- /dev/null
+++ b/contrib/libs/clapack/cggrqf.c
@@ -0,0 +1,269 @@
+/* cggrqf.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c_n1 = -1;
+
+/* Subroutine */ int cggrqf_(integer *m, integer *p, integer *n, complex *a,
+ integer *lda, complex *taua, complex *b, integer *ldb, complex *taub,
+ complex *work, integer *lwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
+
+ /* Local variables */
+ integer nb, nb1, nb2, nb3, lopt;
+ extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *,
+ integer *, complex *, complex *, integer *, integer *), cgerqf_(
+ integer *, integer *, complex *, integer *, complex *, complex *,
+ integer *, integer *), xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ extern /* Subroutine */ int cunmrq_(char *, char *, integer *, integer *,
+ integer *, complex *, integer *, complex *, complex *, integer *,
+ complex *, integer *, integer *);
+ integer lwkopt;
+ logical lquery;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CGGRQF computes a generalized RQ factorization of an M-by-N matrix A */
+/* and a P-by-N matrix B: */
+
+/* A = R*Q, B = Z*T*Q, */
+
+/* where Q is an N-by-N unitary matrix, Z is a P-by-P unitary */
+/* matrix, and R and T assume one of the forms: */
+
+/* if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N, */
+/* N-M M ( R21 ) N */
+/* N */
+
+/* where R12 or R21 is upper triangular, and */
+
+/* if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P, */
+/* ( 0 ) P-N P N-P */
+/* N */
+
+/* where T11 is upper triangular. */
+
+/* In particular, if B is square and nonsingular, the GRQ factorization */
+/* of A and B implicitly gives the RQ factorization of A*inv(B): */
+
+/* A*inv(B) = (R*inv(T))*Z' */
+
+/* where inv(B) denotes the inverse of the matrix B, and Z' denotes the */
+/* conjugate transpose of the matrix Z. */
+
+/* Arguments */
+/* ========= */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix A. M >= 0. */
+
+/* P (input) INTEGER */
+/* The number of rows of the matrix B. P >= 0. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrices A and B. N >= 0. */
+
+/* A (input/output) COMPLEX array, dimension (LDA,N) */
+/* On entry, the M-by-N matrix A. */
+/* On exit, if M <= N, the upper triangle of the subarray */
+/* A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R; */
+/* if M > N, the elements on and above the (M-N)-th subdiagonal */
+/* contain the M-by-N upper trapezoidal matrix R; the remaining */
+/* elements, with the array TAUA, represent the unitary */
+/* matrix Q as a product of elementary reflectors (see Further */
+/* Details). */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,M). */
+
+/* TAUA (output) COMPLEX array, dimension (min(M,N)) */
+/* The scalar factors of the elementary reflectors which */
+/* represent the unitary matrix Q (see Further Details). */
+
+/* B (input/output) COMPLEX array, dimension (LDB,N) */
+/* On entry, the P-by-N matrix B. */
+/* On exit, the elements on and above the diagonal of the array */
+/* contain the min(P,N)-by-N upper trapezoidal matrix T (T is */
+/* upper triangular if P >= N); the elements below the diagonal, */
+/* with the array TAUB, represent the unitary matrix Z as a */
+/* product of elementary reflectors (see Further Details). */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,P). */
+
+/* TAUB (output) COMPLEX array, dimension (min(P,N)) */
+/* The scalar factors of the elementary reflectors which */
+/* represent the unitary matrix Z (see Further Details). */
+
+/* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. LWORK >= max(1,N,M,P). */
+/* For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), */
+/* where NB1 is the optimal blocksize for the RQ factorization */
+/* of an M-by-N matrix, NB2 is the optimal blocksize for the */
+/* QR factorization of a P-by-N matrix, and NB3 is the optimal */
+/* blocksize for a call of CUNMRQ. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO=-i, the i-th argument had an illegal value. */
+
+/* Further Details */
+/* =============== */
+
+/* The matrix Q is represented as a product of elementary reflectors */
+
+/* Q = H(1) H(2) . . . H(k), where k = min(m,n). */
+
+/* Each H(i) has the form */
+
+/* H(i) = I - taua * v * v' */
+
+/* where taua is a complex scalar, and v is a complex vector with */
+/* v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in */
+/* A(m-k+i,1:n-k+i-1), and taua in TAUA(i). */
+/* To form Q explicitly, use LAPACK subroutine CUNGRQ. */
+/* To use Q to update another matrix, use LAPACK subroutine CUNMRQ. */
+
+/* The matrix Z is represented as a product of elementary reflectors */
+
+/* Z = H(1) H(2) . . . H(k), where k = min(p,n). */
+
+/* Each H(i) has the form */
+
+/* H(i) = I - taub * v * v' */
+
+/* where taub is a complex scalar, and v is a complex vector with */
+/* v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), */
+/* and taub in TAUB(i). */
+/* To form Z explicitly, use LAPACK subroutine CUNGQR. */
+/* To use Z to update another matrix, use LAPACK subroutine CUNMQR. */
+
+/* ===================================================================== */
+
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --taua;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ --taub;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ nb1 = ilaenv_(&c__1, "CGERQF", " ", m, n, &c_n1, &c_n1);
+ nb2 = ilaenv_(&c__1, "CGEQRF", " ", p, n, &c_n1, &c_n1);
+ nb3 = ilaenv_(&c__1, "CUNMRQ", " ", m, n, p, &c_n1);
+/* Computing MAX */
+ i__1 = max(nb1,nb2);
+ nb = max(i__1,nb3);
+/* Computing MAX */
+ i__1 = max(*n,*m);
+ lwkopt = max(i__1,*p) * nb;
+ work[1].r = (real) lwkopt, work[1].i = 0.f;
+ lquery = *lwork == -1;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*p < 0) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*lda < max(1,*m)) {
+ *info = -5;
+ } else if (*ldb < max(1,*p)) {
+ *info = -8;
+ } else /* if(complicated condition) */ {
+/* Computing MAX */
+ i__1 = max(1,*m), i__1 = max(i__1,*p);
+ if (*lwork < max(i__1,*n) && ! lquery) {
+ *info = -11;
+ }
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CGGRQF", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* RQ factorization of M-by-N matrix A: A = R*Q */
+
+ cgerqf_(m, n, &a[a_offset], lda, &taua[1], &work[1], lwork, info);
+ lopt = work[1].r;
+
+/* Update B := B*Q' */
+
+ i__1 = min(*m,*n);
+/* Computing MAX */
+ i__2 = 1, i__3 = *m - *n + 1;
+ cunmrq_("Right", "Conjugate Transpose", p, n, &i__1, &a[max(i__2, i__3)+
+ a_dim1], lda, &taua[1], &b[b_offset], ldb, &work[1], lwork, info);
+/* Computing MAX */
+ i__1 = lopt, i__2 = (integer) work[1].r;
+ lopt = max(i__1,i__2);
+
+/* QR factorization of P-by-N matrix B: B = Z*T */
+
+ cgeqrf_(p, n, &b[b_offset], ldb, &taub[1], &work[1], lwork, info);
+/* Computing MAX */
+ i__2 = lopt, i__3 = (integer) work[1].r;
+ i__1 = max(i__2,i__3);
+ work[1].r = (real) i__1, work[1].i = 0.f;
+
+ return 0;
+
+/* End of CGGRQF */
+
+} /* cggrqf_ */