diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cggrqf.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cggrqf.c')
-rw-r--r-- | contrib/libs/clapack/cggrqf.c | 269 |
1 files changed, 269 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cggrqf.c b/contrib/libs/clapack/cggrqf.c new file mode 100644 index 0000000000..2653aeac19 --- /dev/null +++ b/contrib/libs/clapack/cggrqf.c @@ -0,0 +1,269 @@ +/* cggrqf.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c_n1 = -1; + +/* Subroutine */ int cggrqf_(integer *m, integer *p, integer *n, complex *a, + integer *lda, complex *taua, complex *b, integer *ldb, complex *taub, + complex *work, integer *lwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; + + /* Local variables */ + integer nb, nb1, nb2, nb3, lopt; + extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, + integer *, complex *, complex *, integer *, integer *), cgerqf_( + integer *, integer *, complex *, integer *, complex *, complex *, + integer *, integer *), xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + extern /* Subroutine */ int cunmrq_(char *, char *, integer *, integer *, + integer *, complex *, integer *, complex *, complex *, integer *, + complex *, integer *, integer *); + integer lwkopt; + logical lquery; + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CGGRQF computes a generalized RQ factorization of an M-by-N matrix A */ +/* and a P-by-N matrix B: */ + +/* A = R*Q, B = Z*T*Q, */ + +/* where Q is an N-by-N unitary matrix, Z is a P-by-P unitary */ +/* matrix, and R and T assume one of the forms: */ + +/* if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N, */ +/* N-M M ( R21 ) N */ +/* N */ + +/* where R12 or R21 is upper triangular, and */ + +/* if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P, */ +/* ( 0 ) P-N P N-P */ +/* N */ + +/* where T11 is upper triangular. */ + +/* In particular, if B is square and nonsingular, the GRQ factorization */ +/* of A and B implicitly gives the RQ factorization of A*inv(B): */ + +/* A*inv(B) = (R*inv(T))*Z' */ + +/* where inv(B) denotes the inverse of the matrix B, and Z' denotes the */ +/* conjugate transpose of the matrix Z. */ + +/* Arguments */ +/* ========= */ + +/* M (input) INTEGER */ +/* The number of rows of the matrix A. M >= 0. */ + +/* P (input) INTEGER */ +/* The number of rows of the matrix B. P >= 0. */ + +/* N (input) INTEGER */ +/* The number of columns of the matrices A and B. N >= 0. */ + +/* A (input/output) COMPLEX array, dimension (LDA,N) */ +/* On entry, the M-by-N matrix A. */ +/* On exit, if M <= N, the upper triangle of the subarray */ +/* A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R; */ +/* if M > N, the elements on and above the (M-N)-th subdiagonal */ +/* contain the M-by-N upper trapezoidal matrix R; the remaining */ +/* elements, with the array TAUA, represent the unitary */ +/* matrix Q as a product of elementary reflectors (see Further */ +/* Details). */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,M). */ + +/* TAUA (output) COMPLEX array, dimension (min(M,N)) */ +/* The scalar factors of the elementary reflectors which */ +/* represent the unitary matrix Q (see Further Details). */ + +/* B (input/output) COMPLEX array, dimension (LDB,N) */ +/* On entry, the P-by-N matrix B. */ +/* On exit, the elements on and above the diagonal of the array */ +/* contain the min(P,N)-by-N upper trapezoidal matrix T (T is */ +/* upper triangular if P >= N); the elements below the diagonal, */ +/* with the array TAUB, represent the unitary matrix Z as a */ +/* product of elementary reflectors (see Further Details). */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,P). */ + +/* TAUB (output) COMPLEX array, dimension (min(P,N)) */ +/* The scalar factors of the elementary reflectors which */ +/* represent the unitary matrix Z (see Further Details). */ + +/* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The dimension of the array WORK. LWORK >= max(1,N,M,P). */ +/* For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), */ +/* where NB1 is the optimal blocksize for the RQ factorization */ +/* of an M-by-N matrix, NB2 is the optimal blocksize for the */ +/* QR factorization of a P-by-N matrix, and NB3 is the optimal */ +/* blocksize for a call of CUNMRQ. */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the optimal size of the WORK array, returns */ +/* this value as the first entry of the WORK array, and no error */ +/* message related to LWORK is issued by XERBLA. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO=-i, the i-th argument had an illegal value. */ + +/* Further Details */ +/* =============== */ + +/* The matrix Q is represented as a product of elementary reflectors */ + +/* Q = H(1) H(2) . . . H(k), where k = min(m,n). */ + +/* Each H(i) has the form */ + +/* H(i) = I - taua * v * v' */ + +/* where taua is a complex scalar, and v is a complex vector with */ +/* v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in */ +/* A(m-k+i,1:n-k+i-1), and taua in TAUA(i). */ +/* To form Q explicitly, use LAPACK subroutine CUNGRQ. */ +/* To use Q to update another matrix, use LAPACK subroutine CUNMRQ. */ + +/* The matrix Z is represented as a product of elementary reflectors */ + +/* Z = H(1) H(2) . . . H(k), where k = min(p,n). */ + +/* Each H(i) has the form */ + +/* H(i) = I - taub * v * v' */ + +/* where taub is a complex scalar, and v is a complex vector with */ +/* v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), */ +/* and taub in TAUB(i). */ +/* To form Z explicitly, use LAPACK subroutine CUNGQR. */ +/* To use Z to update another matrix, use LAPACK subroutine CUNMQR. */ + +/* ===================================================================== */ + +/* .. Local Scalars .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --taua; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + --taub; + --work; + + /* Function Body */ + *info = 0; + nb1 = ilaenv_(&c__1, "CGERQF", " ", m, n, &c_n1, &c_n1); + nb2 = ilaenv_(&c__1, "CGEQRF", " ", p, n, &c_n1, &c_n1); + nb3 = ilaenv_(&c__1, "CUNMRQ", " ", m, n, p, &c_n1); +/* Computing MAX */ + i__1 = max(nb1,nb2); + nb = max(i__1,nb3); +/* Computing MAX */ + i__1 = max(*n,*m); + lwkopt = max(i__1,*p) * nb; + work[1].r = (real) lwkopt, work[1].i = 0.f; + lquery = *lwork == -1; + if (*m < 0) { + *info = -1; + } else if (*p < 0) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*lda < max(1,*m)) { + *info = -5; + } else if (*ldb < max(1,*p)) { + *info = -8; + } else /* if(complicated condition) */ { +/* Computing MAX */ + i__1 = max(1,*m), i__1 = max(i__1,*p); + if (*lwork < max(i__1,*n) && ! lquery) { + *info = -11; + } + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGGRQF", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* RQ factorization of M-by-N matrix A: A = R*Q */ + + cgerqf_(m, n, &a[a_offset], lda, &taua[1], &work[1], lwork, info); + lopt = work[1].r; + +/* Update B := B*Q' */ + + i__1 = min(*m,*n); +/* Computing MAX */ + i__2 = 1, i__3 = *m - *n + 1; + cunmrq_("Right", "Conjugate Transpose", p, n, &i__1, &a[max(i__2, i__3)+ + a_dim1], lda, &taua[1], &b[b_offset], ldb, &work[1], lwork, info); +/* Computing MAX */ + i__1 = lopt, i__2 = (integer) work[1].r; + lopt = max(i__1,i__2); + +/* QR factorization of P-by-N matrix B: B = Z*T */ + + cgeqrf_(p, n, &b[b_offset], ldb, &taub[1], &work[1], lwork, info); +/* Computing MAX */ + i__2 = lopt, i__3 = (integer) work[1].r; + i__1 = max(i__2,i__3); + work[1].r = (real) i__1, work[1].i = 0.f; + + return 0; + +/* End of CGGRQF */ + +} /* cggrqf_ */ |