diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cgelsy.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cgelsy.c')
-rw-r--r-- | contrib/libs/clapack/cgelsy.c | 512 |
1 files changed, 512 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cgelsy.c b/contrib/libs/clapack/cgelsy.c new file mode 100644 index 0000000000..836bfd08de --- /dev/null +++ b/contrib/libs/clapack/cgelsy.c @@ -0,0 +1,512 @@ +/* cgelsy.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static complex c_b1 = {0.f,0.f}; +static complex c_b2 = {1.f,0.f}; +static integer c__1 = 1; +static integer c_n1 = -1; +static integer c__0 = 0; +static integer c__2 = 2; + +/* Subroutine */ int cgelsy_(integer *m, integer *n, integer *nrhs, complex * + a, integer *lda, complex *b, integer *ldb, integer *jpvt, real *rcond, + integer *rank, complex *work, integer *lwork, real *rwork, integer * + info) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4; + real r__1, r__2; + complex q__1; + + /* Builtin functions */ + double c_abs(complex *); + + /* Local variables */ + integer i__, j; + complex c1, c2, s1, s2; + integer nb, mn, nb1, nb2, nb3, nb4; + real anrm, bnrm, smin, smax; + integer iascl, ibscl; + extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, + complex *, integer *); + integer ismin, ismax; + extern /* Subroutine */ int ctrsm_(char *, char *, char *, char *, + integer *, integer *, complex *, complex *, integer *, complex *, + integer *), claic1_(integer *, + integer *, complex *, real *, complex *, complex *, real *, + complex *, complex *); + real wsize; + extern /* Subroutine */ int cgeqp3_(integer *, integer *, complex *, + integer *, integer *, complex *, complex *, integer *, real *, + integer *), slabad_(real *, real *); + extern doublereal clange_(char *, integer *, integer *, complex *, + integer *, real *); + extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *, + real *, integer *, integer *, complex *, integer *, integer *); + extern doublereal slamch_(char *); + extern /* Subroutine */ int claset_(char *, integer *, integer *, complex + *, complex *, complex *, integer *), xerbla_(char *, + integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + real bignum; + extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, + integer *, complex *, integer *, complex *, complex *, integer *, + complex *, integer *, integer *); + real sminpr, smaxpr, smlnum; + extern /* Subroutine */ int cunmrz_(char *, char *, integer *, integer *, + integer *, integer *, complex *, integer *, complex *, complex *, + integer *, complex *, integer *, integer *); + integer lwkopt; + logical lquery; + extern /* Subroutine */ int ctzrzf_(integer *, integer *, complex *, + integer *, complex *, complex *, integer *, integer *); + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CGELSY computes the minimum-norm solution to a complex linear least */ +/* squares problem: */ +/* minimize || A * X - B || */ +/* using a complete orthogonal factorization of A. A is an M-by-N */ +/* matrix which may be rank-deficient. */ + +/* Several right hand side vectors b and solution vectors x can be */ +/* handled in a single call; they are stored as the columns of the */ +/* M-by-NRHS right hand side matrix B and the N-by-NRHS solution */ +/* matrix X. */ + +/* The routine first computes a QR factorization with column pivoting: */ +/* A * P = Q * [ R11 R12 ] */ +/* [ 0 R22 ] */ +/* with R11 defined as the largest leading submatrix whose estimated */ +/* condition number is less than 1/RCOND. The order of R11, RANK, */ +/* is the effective rank of A. */ + +/* Then, R22 is considered to be negligible, and R12 is annihilated */ +/* by unitary transformations from the right, arriving at the */ +/* complete orthogonal factorization: */ +/* A * P = Q * [ T11 0 ] * Z */ +/* [ 0 0 ] */ +/* The minimum-norm solution is then */ +/* X = P * Z' [ inv(T11)*Q1'*B ] */ +/* [ 0 ] */ +/* where Q1 consists of the first RANK columns of Q. */ + +/* This routine is basically identical to the original xGELSX except */ +/* three differences: */ +/* o The permutation of matrix B (the right hand side) is faster and */ +/* more simple. */ +/* o The call to the subroutine xGEQPF has been substituted by the */ +/* the call to the subroutine xGEQP3. This subroutine is a Blas-3 */ +/* version of the QR factorization with column pivoting. */ +/* o Matrix B (the right hand side) is updated with Blas-3. */ + +/* Arguments */ +/* ========= */ + +/* M (input) INTEGER */ +/* The number of rows of the matrix A. M >= 0. */ + +/* N (input) INTEGER */ +/* The number of columns of the matrix A. N >= 0. */ + +/* NRHS (input) INTEGER */ +/* The number of right hand sides, i.e., the number of */ +/* columns of matrices B and X. NRHS >= 0. */ + +/* A (input/output) COMPLEX array, dimension (LDA,N) */ +/* On entry, the M-by-N matrix A. */ +/* On exit, A has been overwritten by details of its */ +/* complete orthogonal factorization. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,M). */ + +/* B (input/output) COMPLEX array, dimension (LDB,NRHS) */ +/* On entry, the M-by-NRHS right hand side matrix B. */ +/* On exit, the N-by-NRHS solution matrix X. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,M,N). */ + +/* JPVT (input/output) INTEGER array, dimension (N) */ +/* On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */ +/* to the front of AP, otherwise column i is a free column. */ +/* On exit, if JPVT(i) = k, then the i-th column of A*P */ +/* was the k-th column of A. */ + +/* RCOND (input) REAL */ +/* RCOND is used to determine the effective rank of A, which */ +/* is defined as the order of the largest leading triangular */ +/* submatrix R11 in the QR factorization with pivoting of A, */ +/* whose estimated condition number < 1/RCOND. */ + +/* RANK (output) INTEGER */ +/* The effective rank of A, i.e., the order of the submatrix */ +/* R11. This is the same as the order of the submatrix T11 */ +/* in the complete orthogonal factorization of A. */ + +/* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The dimension of the array WORK. */ +/* The unblocked strategy requires that: */ +/* LWORK >= MN + MAX( 2*MN, N+1, MN+NRHS ) */ +/* where MN = min(M,N). */ +/* The block algorithm requires that: */ +/* LWORK >= MN + MAX( 2*MN, NB*(N+1), MN+MN*NB, MN+NB*NRHS ) */ +/* where NB is an upper bound on the blocksize returned */ +/* by ILAENV for the routines CGEQP3, CTZRZF, CTZRQF, CUNMQR, */ +/* and CUNMRZ. */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the optimal size of the WORK array, returns */ +/* this value as the first entry of the WORK array, and no error */ +/* message related to LWORK is issued by XERBLA. */ + +/* RWORK (workspace) REAL array, dimension (2*N) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */ +/* E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */ +/* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + --jpvt; + --work; + --rwork; + + /* Function Body */ + mn = min(*m,*n); + ismin = mn + 1; + ismax = (mn << 1) + 1; + +/* Test the input arguments. */ + + *info = 0; + nb1 = ilaenv_(&c__1, "CGEQRF", " ", m, n, &c_n1, &c_n1); + nb2 = ilaenv_(&c__1, "CGERQF", " ", m, n, &c_n1, &c_n1); + nb3 = ilaenv_(&c__1, "CUNMQR", " ", m, n, nrhs, &c_n1); + nb4 = ilaenv_(&c__1, "CUNMRQ", " ", m, n, nrhs, &c_n1); +/* Computing MAX */ + i__1 = max(nb1,nb2), i__1 = max(i__1,nb3); + nb = max(i__1,nb4); +/* Computing MAX */ + i__1 = 1, i__2 = mn + (*n << 1) + nb * (*n + 1), i__1 = max(i__1,i__2), + i__2 = (mn << 1) + nb * *nrhs; + lwkopt = max(i__1,i__2); + q__1.r = (real) lwkopt, q__1.i = 0.f; + work[1].r = q__1.r, work[1].i = q__1.i; + lquery = *lwork == -1; + if (*m < 0) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*nrhs < 0) { + *info = -3; + } else if (*lda < max(1,*m)) { + *info = -5; + } else /* if(complicated condition) */ { +/* Computing MAX */ + i__1 = max(1,*m); + if (*ldb < max(i__1,*n)) { + *info = -7; + } else /* if(complicated condition) */ { +/* Computing MAX */ + i__1 = mn << 1, i__2 = *n + 1, i__1 = max(i__1,i__2), i__2 = mn + + *nrhs; + if (*lwork < mn + max(i__1,i__2) && ! lquery) { + *info = -12; + } + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGELSY", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + +/* Computing MIN */ + i__1 = min(*m,*n); + if (min(i__1,*nrhs) == 0) { + *rank = 0; + return 0; + } + +/* Get machine parameters */ + + smlnum = slamch_("S") / slamch_("P"); + bignum = 1.f / smlnum; + slabad_(&smlnum, &bignum); + +/* Scale A, B if max entries outside range [SMLNUM,BIGNUM] */ + + anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]); + iascl = 0; + if (anrm > 0.f && anrm < smlnum) { + +/* Scale matrix norm up to SMLNUM */ + + clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, + info); + iascl = 1; + } else if (anrm > bignum) { + +/* Scale matrix norm down to BIGNUM */ + + clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, + info); + iascl = 2; + } else if (anrm == 0.f) { + +/* Matrix all zero. Return zero solution. */ + + i__1 = max(*m,*n); + claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb); + *rank = 0; + goto L70; + } + + bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]); + ibscl = 0; + if (bnrm > 0.f && bnrm < smlnum) { + +/* Scale matrix norm up to SMLNUM */ + + clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb, + info); + ibscl = 1; + } else if (bnrm > bignum) { + +/* Scale matrix norm down to BIGNUM */ + + clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb, + info); + ibscl = 2; + } + +/* Compute QR factorization with column pivoting of A: */ +/* A * P = Q * R */ + + i__1 = *lwork - mn; + cgeqp3_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], &i__1, + &rwork[1], info); + i__1 = mn + 1; + wsize = mn + work[i__1].r; + +/* complex workspace: MN+NB*(N+1). real workspace 2*N. */ +/* Details of Householder rotations stored in WORK(1:MN). */ + +/* Determine RANK using incremental condition estimation */ + + i__1 = ismin; + work[i__1].r = 1.f, work[i__1].i = 0.f; + i__1 = ismax; + work[i__1].r = 1.f, work[i__1].i = 0.f; + smax = c_abs(&a[a_dim1 + 1]); + smin = smax; + if (c_abs(&a[a_dim1 + 1]) == 0.f) { + *rank = 0; + i__1 = max(*m,*n); + claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb); + goto L70; + } else { + *rank = 1; + } + +L10: + if (*rank < mn) { + i__ = *rank + 1; + claic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[ + i__ + i__ * a_dim1], &sminpr, &s1, &c1); + claic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[ + i__ + i__ * a_dim1], &smaxpr, &s2, &c2); + + if (smaxpr * *rcond <= sminpr) { + i__1 = *rank; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = ismin + i__ - 1; + i__3 = ismin + i__ - 1; + q__1.r = s1.r * work[i__3].r - s1.i * work[i__3].i, q__1.i = + s1.r * work[i__3].i + s1.i * work[i__3].r; + work[i__2].r = q__1.r, work[i__2].i = q__1.i; + i__2 = ismax + i__ - 1; + i__3 = ismax + i__ - 1; + q__1.r = s2.r * work[i__3].r - s2.i * work[i__3].i, q__1.i = + s2.r * work[i__3].i + s2.i * work[i__3].r; + work[i__2].r = q__1.r, work[i__2].i = q__1.i; +/* L20: */ + } + i__1 = ismin + *rank; + work[i__1].r = c1.r, work[i__1].i = c1.i; + i__1 = ismax + *rank; + work[i__1].r = c2.r, work[i__1].i = c2.i; + smin = sminpr; + smax = smaxpr; + ++(*rank); + goto L10; + } + } + +/* complex workspace: 3*MN. */ + +/* Logically partition R = [ R11 R12 ] */ +/* [ 0 R22 ] */ +/* where R11 = R(1:RANK,1:RANK) */ + +/* [R11,R12] = [ T11, 0 ] * Y */ + + if (*rank < *n) { + i__1 = *lwork - (mn << 1); + ctzrzf_(rank, n, &a[a_offset], lda, &work[mn + 1], &work[(mn << 1) + + 1], &i__1, info); + } + +/* complex workspace: 2*MN. */ +/* Details of Householder rotations stored in WORK(MN+1:2*MN) */ + +/* B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */ + + i__1 = *lwork - (mn << 1); + cunmqr_("Left", "Conjugate transpose", m, nrhs, &mn, &a[a_offset], lda, & + work[1], &b[b_offset], ldb, &work[(mn << 1) + 1], &i__1, info); +/* Computing MAX */ + i__1 = (mn << 1) + 1; + r__1 = wsize, r__2 = (mn << 1) + work[i__1].r; + wsize = dmax(r__1,r__2); + +/* complex workspace: 2*MN+NB*NRHS. */ + +/* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */ + + ctrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b2, &a[ + a_offset], lda, &b[b_offset], ldb); + + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = *rank + 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + b[i__3].r = 0.f, b[i__3].i = 0.f; +/* L30: */ + } +/* L40: */ + } + +/* B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS) */ + + if (*rank < *n) { + i__1 = *n - *rank; + i__2 = *lwork - (mn << 1); + cunmrz_("Left", "Conjugate transpose", n, nrhs, rank, &i__1, &a[ + a_offset], lda, &work[mn + 1], &b[b_offset], ldb, &work[(mn << + 1) + 1], &i__2, info); + } + +/* complex workspace: 2*MN+NRHS. */ + +/* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */ + + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = jpvt[i__]; + i__4 = i__ + j * b_dim1; + work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i; +/* L50: */ + } + ccopy_(n, &work[1], &c__1, &b[j * b_dim1 + 1], &c__1); +/* L60: */ + } + +/* complex workspace: N. */ + +/* Undo scaling */ + + if (iascl == 1) { + clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb, + info); + clascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset], + lda, info); + } else if (iascl == 2) { + clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb, + info); + clascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset], + lda, info); + } + if (ibscl == 1) { + clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb, + info); + } else if (ibscl == 2) { + clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb, + info); + } + +L70: + q__1.r = (real) lwkopt, q__1.i = 0.f; + work[1].r = q__1.r, work[1].i = q__1.i; + + return 0; + +/* End of CGELSY */ + +} /* cgelsy_ */ |