aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/cgelsd.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cgelsd.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cgelsd.c')
-rw-r--r--contrib/libs/clapack/cgelsd.c717
1 files changed, 717 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cgelsd.c b/contrib/libs/clapack/cgelsd.c
new file mode 100644
index 0000000000..c949a9371f
--- /dev/null
+++ b/contrib/libs/clapack/cgelsd.c
@@ -0,0 +1,717 @@
+/* cgelsd.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static complex c_b1 = {0.f,0.f};
+static integer c__9 = 9;
+static integer c__0 = 0;
+static integer c__6 = 6;
+static integer c_n1 = -1;
+static integer c__1 = 1;
+static real c_b80 = 0.f;
+
+/* Subroutine */ int cgelsd_(integer *m, integer *n, integer *nrhs, complex *
+ a, integer *lda, complex *b, integer *ldb, real *s, real *rcond,
+ integer *rank, complex *work, integer *lwork, real *rwork, integer *
+ iwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
+
+ /* Builtin functions */
+ double log(doublereal);
+
+ /* Local variables */
+ integer ie, il, mm;
+ real eps, anrm, bnrm;
+ integer itau, nlvl, iascl, ibscl;
+ real sfmin;
+ integer minmn, maxmn, itaup, itauq, mnthr, nwork;
+ extern /* Subroutine */ int cgebrd_(integer *, integer *, complex *,
+ integer *, real *, real *, complex *, complex *, complex *,
+ integer *, integer *), slabad_(real *, real *);
+ extern doublereal clange_(char *, integer *, integer *, complex *,
+ integer *, real *);
+ extern /* Subroutine */ int cgelqf_(integer *, integer *, complex *,
+ integer *, complex *, complex *, integer *, integer *), clalsd_(
+ char *, integer *, integer *, integer *, real *, real *, complex *
+, integer *, real *, integer *, complex *, real *, integer *,
+ integer *), clascl_(char *, integer *, integer *, real *,
+ real *, integer *, integer *, complex *, integer *, integer *), cgeqrf_(integer *, integer *, complex *, integer *,
+ complex *, complex *, integer *, integer *);
+ extern doublereal slamch_(char *);
+ extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex
+ *, integer *, complex *, integer *), claset_(char *,
+ integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ real bignum;
+ extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
+ real *, integer *, integer *, real *, integer *, integer *), cunmbr_(char *, char *, char *, integer *, integer *,
+ integer *, complex *, integer *, complex *, complex *, integer *,
+ complex *, integer *, integer *), slaset_(
+ char *, integer *, integer *, real *, real *, real *, integer *), cunmlq_(char *, char *, integer *, integer *, integer *,
+ complex *, integer *, complex *, complex *, integer *, complex *,
+ integer *, integer *);
+ integer ldwork;
+ extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *,
+ integer *, complex *, integer *, complex *, complex *, integer *,
+ complex *, integer *, integer *);
+ integer liwork, minwrk, maxwrk;
+ real smlnum;
+ integer lrwork;
+ logical lquery;
+ integer nrwork, smlsiz;
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CGELSD computes the minimum-norm solution to a real linear least */
+/* squares problem: */
+/* minimize 2-norm(| b - A*x |) */
+/* using the singular value decomposition (SVD) of A. A is an M-by-N */
+/* matrix which may be rank-deficient. */
+
+/* Several right hand side vectors b and solution vectors x can be */
+/* handled in a single call; they are stored as the columns of the */
+/* M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
+/* matrix X. */
+
+/* The problem is solved in three steps: */
+/* (1) Reduce the coefficient matrix A to bidiagonal form with */
+/* Householder tranformations, reducing the original problem */
+/* into a "bidiagonal least squares problem" (BLS) */
+/* (2) Solve the BLS using a divide and conquer approach. */
+/* (3) Apply back all the Householder tranformations to solve */
+/* the original least squares problem. */
+
+/* The effective rank of A is determined by treating as zero those */
+/* singular values which are less than RCOND times the largest singular */
+/* value. */
+
+/* The divide and conquer algorithm makes very mild assumptions about */
+/* floating point arithmetic. It will work on machines with a guard */
+/* digit in add/subtract, or on those binary machines without guard */
+/* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
+/* Cray-2. It could conceivably fail on hexadecimal or decimal machines */
+/* without guard digits, but we know of none. */
+
+/* Arguments */
+/* ========= */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix A. M >= 0. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrix A. N >= 0. */
+
+/* NRHS (input) INTEGER */
+/* The number of right hand sides, i.e., the number of columns */
+/* of the matrices B and X. NRHS >= 0. */
+
+/* A (input/output) COMPLEX array, dimension (LDA,N) */
+/* On entry, the M-by-N matrix A. */
+/* On exit, A has been destroyed. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,M). */
+
+/* B (input/output) COMPLEX array, dimension (LDB,NRHS) */
+/* On entry, the M-by-NRHS right hand side matrix B. */
+/* On exit, B is overwritten by the N-by-NRHS solution matrix X. */
+/* If m >= n and RANK = n, the residual sum-of-squares for */
+/* the solution in the i-th column is given by the sum of */
+/* squares of the modulus of elements n+1:m in that column. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,M,N). */
+
+/* S (output) REAL array, dimension (min(M,N)) */
+/* The singular values of A in decreasing order. */
+/* The condition number of A in the 2-norm = S(1)/S(min(m,n)). */
+
+/* RCOND (input) REAL */
+/* RCOND is used to determine the effective rank of A. */
+/* Singular values S(i) <= RCOND*S(1) are treated as zero. */
+/* If RCOND < 0, machine precision is used instead. */
+
+/* RANK (output) INTEGER */
+/* The effective rank of A, i.e., the number of singular values */
+/* which are greater than RCOND*S(1). */
+
+/* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. LWORK must be at least 1. */
+/* The exact minimum amount of workspace needed depends on M, */
+/* N and NRHS. As long as LWORK is at least */
+/* 2 * N + N * NRHS */
+/* if M is greater than or equal to N or */
+/* 2 * M + M * NRHS */
+/* if M is less than N, the code will execute correctly. */
+/* For good performance, LWORK should generally be larger. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the array WORK and the */
+/* minimum sizes of the arrays RWORK and IWORK, and returns */
+/* these values as the first entries of the WORK, RWORK and */
+/* IWORK arrays, and no error message related to LWORK is issued */
+/* by XERBLA. */
+
+/* RWORK (workspace) REAL array, dimension (MAX(1,LRWORK)) */
+/* LRWORK >= */
+/* 10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS + */
+/* (SMLSIZ+1)**2 */
+/* if M is greater than or equal to N or */
+/* 10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS + */
+/* (SMLSIZ+1)**2 */
+/* if M is less than N, the code will execute correctly. */
+/* SMLSIZ is returned by ILAENV and is equal to the maximum */
+/* size of the subproblems at the bottom of the computation */
+/* tree (usually about 25), and */
+/* NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) */
+/* On exit, if INFO = 0, RWORK(1) returns the minimum LRWORK. */
+
+/* IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK)) */
+/* LIWORK >= max(1, 3*MINMN*NLVL + 11*MINMN), */
+/* where MINMN = MIN( M,N ). */
+/* On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+/* > 0: the algorithm for computing the SVD failed to converge; */
+/* if INFO = i, i off-diagonal elements of an intermediate */
+/* bidiagonal form did not converge to zero. */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Ming Gu and Ren-Cang Li, Computer Science Division, University of */
+/* California at Berkeley, USA */
+/* Osni Marques, LBNL/NERSC, USA */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input arguments. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ --s;
+ --work;
+ --rwork;
+ --iwork;
+
+ /* Function Body */
+ *info = 0;
+ minmn = min(*m,*n);
+ maxmn = max(*m,*n);
+ lquery = *lwork == -1;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*nrhs < 0) {
+ *info = -3;
+ } else if (*lda < max(1,*m)) {
+ *info = -5;
+ } else if (*ldb < max(1,maxmn)) {
+ *info = -7;
+ }
+
+/* Compute workspace. */
+/* (Note: Comments in the code beginning "Workspace:" describe the */
+/* minimal amount of workspace needed at that point in the code, */
+/* as well as the preferred amount for good performance. */
+/* NB refers to the optimal block size for the immediately */
+/* following subroutine, as returned by ILAENV.) */
+
+ if (*info == 0) {
+ minwrk = 1;
+ maxwrk = 1;
+ liwork = 1;
+ lrwork = 1;
+ if (minmn > 0) {
+ smlsiz = ilaenv_(&c__9, "CGELSD", " ", &c__0, &c__0, &c__0, &c__0);
+ mnthr = ilaenv_(&c__6, "CGELSD", " ", m, n, nrhs, &c_n1);
+/* Computing MAX */
+ i__1 = (integer) (log((real) minmn / (real) (smlsiz + 1)) / log(
+ 2.f)) + 1;
+ nlvl = max(i__1,0);
+ liwork = minmn * 3 * nlvl + minmn * 11;
+ mm = *m;
+ if (*m >= *n && *m >= mnthr) {
+
+/* Path 1a - overdetermined, with many more rows than */
+/* columns. */
+
+ mm = *n;
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *n * ilaenv_(&c__1, "CGEQRF", " ", m, n,
+ &c_n1, &c_n1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *nrhs * ilaenv_(&c__1, "CUNMQR", "LC",
+ m, nrhs, n, &c_n1);
+ maxwrk = max(i__1,i__2);
+ }
+ if (*m >= *n) {
+
+/* Path 1 - overdetermined or exactly determined. */
+
+/* Computing 2nd power */
+ i__1 = smlsiz + 1;
+ lrwork = *n * 10 + (*n << 1) * smlsiz + (*n << 3) * nlvl +
+ smlsiz * 3 * *nrhs + i__1 * i__1;
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = (*n << 1) + (mm + *n) * ilaenv_(&c__1,
+ "CGEBRD", " ", &mm, n, &c_n1, &c_n1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = (*n << 1) + *nrhs * ilaenv_(&c__1,
+ "CUNMBR", "QLC", &mm, nrhs, n, &c_n1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1,
+ "CUNMBR", "PLN", n, nrhs, n, &c_n1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = (*n << 1) + *n * *nrhs;
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = (*n << 1) + mm, i__2 = (*n << 1) + *n * *nrhs;
+ minwrk = max(i__1,i__2);
+ }
+ if (*n > *m) {
+/* Computing 2nd power */
+ i__1 = smlsiz + 1;
+ lrwork = *m * 10 + (*m << 1) * smlsiz + (*m << 3) * nlvl +
+ smlsiz * 3 * *nrhs + i__1 * i__1;
+ if (*n >= mnthr) {
+
+/* Path 2a - underdetermined, with many more columns */
+/* than rows. */
+
+ maxwrk = *m + *m * ilaenv_(&c__1, "CGELQF", " ", m, n, &
+ c_n1, &c_n1);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m << 1) *
+ ilaenv_(&c__1, "CGEBRD", " ", m, m, &c_n1, &c_n1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *nrhs *
+ ilaenv_(&c__1, "CUNMBR", "QLC", m, nrhs, m, &c_n1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m - 1) *
+ ilaenv_(&c__1, "CUNMLQ", "LC", n, nrhs, m, &c_n1);
+ maxwrk = max(i__1,i__2);
+ if (*nrhs > 1) {
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
+ maxwrk = max(i__1,i__2);
+ } else {
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
+ maxwrk = max(i__1,i__2);
+ }
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *m * *nrhs;
+ maxwrk = max(i__1,i__2);
+/* XXX: Ensure the Path 2a case below is triggered. The workspace */
+/* calculation should use queries for all routines eventually. */
+/* Computing MAX */
+/* Computing MAX */
+ i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4),
+ i__3 = max(i__3,*nrhs), i__4 = *n - *m * 3;
+ i__1 = maxwrk, i__2 = (*m << 2) + *m * *m + max(i__3,i__4)
+ ;
+ maxwrk = max(i__1,i__2);
+ } else {
+
+/* Path 2 - underdetermined. */
+
+ maxwrk = (*m << 1) + (*n + *m) * ilaenv_(&c__1, "CGEBRD",
+ " ", m, n, &c_n1, &c_n1);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = (*m << 1) + *nrhs * ilaenv_(&c__1,
+ "CUNMBR", "QLC", m, nrhs, m, &c_n1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1,
+ "CUNMBR", "PLN", n, nrhs, m, &c_n1);
+ maxwrk = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = maxwrk, i__2 = (*m << 1) + *m * *nrhs;
+ maxwrk = max(i__1,i__2);
+ }
+/* Computing MAX */
+ i__1 = (*m << 1) + *n, i__2 = (*m << 1) + *m * *nrhs;
+ minwrk = max(i__1,i__2);
+ }
+ }
+ minwrk = min(minwrk,maxwrk);
+ work[1].r = (real) maxwrk, work[1].i = 0.f;
+ iwork[1] = liwork;
+ rwork[1] = (real) lrwork;
+
+ if (*lwork < minwrk && ! lquery) {
+ *info = -12;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CGELSD", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*m == 0 || *n == 0) {
+ *rank = 0;
+ return 0;
+ }
+
+/* Get machine parameters. */
+
+ eps = slamch_("P");
+ sfmin = slamch_("S");
+ smlnum = sfmin / eps;
+ bignum = 1.f / smlnum;
+ slabad_(&smlnum, &bignum);
+
+/* Scale A if max entry outside range [SMLNUM,BIGNUM]. */
+
+ anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]);
+ iascl = 0;
+ if (anrm > 0.f && anrm < smlnum) {
+
+/* Scale matrix norm up to SMLNUM */
+
+ clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
+ info);
+ iascl = 1;
+ } else if (anrm > bignum) {
+
+/* Scale matrix norm down to BIGNUM. */
+
+ clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
+ info);
+ iascl = 2;
+ } else if (anrm == 0.f) {
+
+/* Matrix all zero. Return zero solution. */
+
+ i__1 = max(*m,*n);
+ claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
+ slaset_("F", &minmn, &c__1, &c_b80, &c_b80, &s[1], &c__1);
+ *rank = 0;
+ goto L10;
+ }
+
+/* Scale B if max entry outside range [SMLNUM,BIGNUM]. */
+
+ bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
+ ibscl = 0;
+ if (bnrm > 0.f && bnrm < smlnum) {
+
+/* Scale matrix norm up to SMLNUM. */
+
+ clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
+ info);
+ ibscl = 1;
+ } else if (bnrm > bignum) {
+
+/* Scale matrix norm down to BIGNUM. */
+
+ clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
+ info);
+ ibscl = 2;
+ }
+
+/* If M < N make sure B(M+1:N,:) = 0 */
+
+ if (*m < *n) {
+ i__1 = *n - *m;
+ claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
+ }
+
+/* Overdetermined case. */
+
+ if (*m >= *n) {
+
+/* Path 1 - overdetermined or exactly determined. */
+
+ mm = *m;
+ if (*m >= mnthr) {
+
+/* Path 1a - overdetermined, with many more rows than columns */
+
+ mm = *n;
+ itau = 1;
+ nwork = itau + *n;
+
+/* Compute A=Q*R. */
+/* (RWorkspace: need N) */
+/* (CWorkspace: need N, prefer N*NB) */
+
+ i__1 = *lwork - nwork + 1;
+ cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
+ info);
+
+/* Multiply B by transpose(Q). */
+/* (RWorkspace: need N) */
+/* (CWorkspace: need NRHS, prefer NRHS*NB) */
+
+ i__1 = *lwork - nwork + 1;
+ cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
+ b_offset], ldb, &work[nwork], &i__1, info);
+
+/* Zero out below R. */
+
+ if (*n > 1) {
+ i__1 = *n - 1;
+ i__2 = *n - 1;
+ claset_("L", &i__1, &i__2, &c_b1, &c_b1, &a[a_dim1 + 2], lda);
+ }
+ }
+
+ itauq = 1;
+ itaup = itauq + *n;
+ nwork = itaup + *n;
+ ie = 1;
+ nrwork = ie + *n;
+
+/* Bidiagonalize R in A. */
+/* (RWorkspace: need N) */
+/* (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */
+
+ i__1 = *lwork - nwork + 1;
+ cgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &
+ work[itaup], &work[nwork], &i__1, info);
+
+/* Multiply B by transpose of left bidiagonalizing vectors of R. */
+/* (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */
+
+ i__1 = *lwork - nwork + 1;
+ cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
+ &b[b_offset], ldb, &work[nwork], &i__1, info);
+
+/* Solve the bidiagonal least squares problem. */
+
+ clalsd_("U", &smlsiz, n, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb,
+ rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info);
+ if (*info != 0) {
+ goto L10;
+ }
+
+/* Multiply B by right bidiagonalizing vectors of R. */
+
+ i__1 = *lwork - nwork + 1;
+ cunmbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], &
+ b[b_offset], ldb, &work[nwork], &i__1, info);
+
+ } else /* if(complicated condition) */ {
+/* Computing MAX */
+ i__1 = *m, i__2 = (*m << 1) - 4, i__1 = max(i__1,i__2), i__1 = max(
+ i__1,*nrhs), i__2 = *n - *m * 3;
+ if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + max(i__1,i__2)) {
+
+/* Path 2a - underdetermined, with many more columns than rows */
+/* and sufficient workspace for an efficient algorithm. */
+
+ ldwork = *m;
+/* Computing MAX */
+/* Computing MAX */
+ i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4), i__3 =
+ max(i__3,*nrhs), i__4 = *n - *m * 3;
+ i__1 = (*m << 2) + *m * *lda + max(i__3,i__4), i__2 = *m * *lda +
+ *m + *m * *nrhs;
+ if (*lwork >= max(i__1,i__2)) {
+ ldwork = *lda;
+ }
+ itau = 1;
+ nwork = *m + 1;
+
+/* Compute A=L*Q. */
+/* (CWorkspace: need 2*M, prefer M+M*NB) */
+
+ i__1 = *lwork - nwork + 1;
+ cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
+ info);
+ il = nwork;
+
+/* Copy L to WORK(IL), zeroing out above its diagonal. */
+
+ clacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
+ i__1 = *m - 1;
+ i__2 = *m - 1;
+ claset_("U", &i__1, &i__2, &c_b1, &c_b1, &work[il + ldwork], &
+ ldwork);
+ itauq = il + ldwork * *m;
+ itaup = itauq + *m;
+ nwork = itaup + *m;
+ ie = 1;
+ nrwork = ie + *m;
+
+/* Bidiagonalize L in WORK(IL). */
+/* (RWorkspace: need M) */
+/* (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB) */
+
+ i__1 = *lwork - nwork + 1;
+ cgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq],
+ &work[itaup], &work[nwork], &i__1, info);
+
+/* Multiply B by transpose of left bidiagonalizing vectors of L. */
+/* (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */
+
+ i__1 = *lwork - nwork + 1;
+ cunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[
+ itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);
+
+/* Solve the bidiagonal least squares problem. */
+
+ clalsd_("U", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset],
+ ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
+ info);
+ if (*info != 0) {
+ goto L10;
+ }
+
+/* Multiply B by right bidiagonalizing vectors of L. */
+
+ i__1 = *lwork - nwork + 1;
+ cunmbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[
+ itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);
+
+/* Zero out below first M rows of B. */
+
+ i__1 = *n - *m;
+ claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
+ nwork = itau + *m;
+
+/* Multiply transpose(Q) by B. */
+/* (CWorkspace: need NRHS, prefer NRHS*NB) */
+
+ i__1 = *lwork - nwork + 1;
+ cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
+ b_offset], ldb, &work[nwork], &i__1, info);
+
+ } else {
+
+/* Path 2 - remaining underdetermined cases. */
+
+ itauq = 1;
+ itaup = itauq + *m;
+ nwork = itaup + *m;
+ ie = 1;
+ nrwork = ie + *m;
+
+/* Bidiagonalize A. */
+/* (RWorkspace: need M) */
+/* (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) */
+
+ i__1 = *lwork - nwork + 1;
+ cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
+ &work[itaup], &work[nwork], &i__1, info);
+
+/* Multiply B by transpose of left bidiagonalizing vectors. */
+/* (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */
+
+ i__1 = *lwork - nwork + 1;
+ cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq]
+, &b[b_offset], ldb, &work[nwork], &i__1, info);
+
+/* Solve the bidiagonal least squares problem. */
+
+ clalsd_("L", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset],
+ ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
+ info);
+ if (*info != 0) {
+ goto L10;
+ }
+
+/* Multiply B by right bidiagonalizing vectors of A. */
+
+ i__1 = *lwork - nwork + 1;
+ cunmbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup]
+, &b[b_offset], ldb, &work[nwork], &i__1, info);
+
+ }
+ }
+
+/* Undo scaling. */
+
+ if (iascl == 1) {
+ clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
+ info);
+ slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
+ minmn, info);
+ } else if (iascl == 2) {
+ clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
+ info);
+ slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
+ minmn, info);
+ }
+ if (ibscl == 1) {
+ clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
+ info);
+ } else if (ibscl == 2) {
+ clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
+ info);
+ }
+
+L10:
+ work[1].r = (real) maxwrk, work[1].i = 0.f;
+ iwork[1] = liwork;
+ rwork[1] = (real) lrwork;
+ return 0;
+
+/* End of CGELSD */
+
+} /* cgelsd_ */