diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cgelsd.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cgelsd.c')
-rw-r--r-- | contrib/libs/clapack/cgelsd.c | 717 |
1 files changed, 717 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cgelsd.c b/contrib/libs/clapack/cgelsd.c new file mode 100644 index 0000000000..c949a9371f --- /dev/null +++ b/contrib/libs/clapack/cgelsd.c @@ -0,0 +1,717 @@ +/* cgelsd.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static complex c_b1 = {0.f,0.f}; +static integer c__9 = 9; +static integer c__0 = 0; +static integer c__6 = 6; +static integer c_n1 = -1; +static integer c__1 = 1; +static real c_b80 = 0.f; + +/* Subroutine */ int cgelsd_(integer *m, integer *n, integer *nrhs, complex * + a, integer *lda, complex *b, integer *ldb, real *s, real *rcond, + integer *rank, complex *work, integer *lwork, real *rwork, integer * + iwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4; + + /* Builtin functions */ + double log(doublereal); + + /* Local variables */ + integer ie, il, mm; + real eps, anrm, bnrm; + integer itau, nlvl, iascl, ibscl; + real sfmin; + integer minmn, maxmn, itaup, itauq, mnthr, nwork; + extern /* Subroutine */ int cgebrd_(integer *, integer *, complex *, + integer *, real *, real *, complex *, complex *, complex *, + integer *, integer *), slabad_(real *, real *); + extern doublereal clange_(char *, integer *, integer *, complex *, + integer *, real *); + extern /* Subroutine */ int cgelqf_(integer *, integer *, complex *, + integer *, complex *, complex *, integer *, integer *), clalsd_( + char *, integer *, integer *, integer *, real *, real *, complex * +, integer *, real *, integer *, complex *, real *, integer *, + integer *), clascl_(char *, integer *, integer *, real *, + real *, integer *, integer *, complex *, integer *, integer *), cgeqrf_(integer *, integer *, complex *, integer *, + complex *, complex *, integer *, integer *); + extern doublereal slamch_(char *); + extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex + *, integer *, complex *, integer *), claset_(char *, + integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + real bignum; + extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, + real *, integer *, integer *, real *, integer *, integer *), cunmbr_(char *, char *, char *, integer *, integer *, + integer *, complex *, integer *, complex *, complex *, integer *, + complex *, integer *, integer *), slaset_( + char *, integer *, integer *, real *, real *, real *, integer *), cunmlq_(char *, char *, integer *, integer *, integer *, + complex *, integer *, complex *, complex *, integer *, complex *, + integer *, integer *); + integer ldwork; + extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, + integer *, complex *, integer *, complex *, complex *, integer *, + complex *, integer *, integer *); + integer liwork, minwrk, maxwrk; + real smlnum; + integer lrwork; + logical lquery; + integer nrwork, smlsiz; + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CGELSD computes the minimum-norm solution to a real linear least */ +/* squares problem: */ +/* minimize 2-norm(| b - A*x |) */ +/* using the singular value decomposition (SVD) of A. A is an M-by-N */ +/* matrix which may be rank-deficient. */ + +/* Several right hand side vectors b and solution vectors x can be */ +/* handled in a single call; they are stored as the columns of the */ +/* M-by-NRHS right hand side matrix B and the N-by-NRHS solution */ +/* matrix X. */ + +/* The problem is solved in three steps: */ +/* (1) Reduce the coefficient matrix A to bidiagonal form with */ +/* Householder tranformations, reducing the original problem */ +/* into a "bidiagonal least squares problem" (BLS) */ +/* (2) Solve the BLS using a divide and conquer approach. */ +/* (3) Apply back all the Householder tranformations to solve */ +/* the original least squares problem. */ + +/* The effective rank of A is determined by treating as zero those */ +/* singular values which are less than RCOND times the largest singular */ +/* value. */ + +/* The divide and conquer algorithm makes very mild assumptions about */ +/* floating point arithmetic. It will work on machines with a guard */ +/* digit in add/subtract, or on those binary machines without guard */ +/* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */ +/* Cray-2. It could conceivably fail on hexadecimal or decimal machines */ +/* without guard digits, but we know of none. */ + +/* Arguments */ +/* ========= */ + +/* M (input) INTEGER */ +/* The number of rows of the matrix A. M >= 0. */ + +/* N (input) INTEGER */ +/* The number of columns of the matrix A. N >= 0. */ + +/* NRHS (input) INTEGER */ +/* The number of right hand sides, i.e., the number of columns */ +/* of the matrices B and X. NRHS >= 0. */ + +/* A (input/output) COMPLEX array, dimension (LDA,N) */ +/* On entry, the M-by-N matrix A. */ +/* On exit, A has been destroyed. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,M). */ + +/* B (input/output) COMPLEX array, dimension (LDB,NRHS) */ +/* On entry, the M-by-NRHS right hand side matrix B. */ +/* On exit, B is overwritten by the N-by-NRHS solution matrix X. */ +/* If m >= n and RANK = n, the residual sum-of-squares for */ +/* the solution in the i-th column is given by the sum of */ +/* squares of the modulus of elements n+1:m in that column. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,M,N). */ + +/* S (output) REAL array, dimension (min(M,N)) */ +/* The singular values of A in decreasing order. */ +/* The condition number of A in the 2-norm = S(1)/S(min(m,n)). */ + +/* RCOND (input) REAL */ +/* RCOND is used to determine the effective rank of A. */ +/* Singular values S(i) <= RCOND*S(1) are treated as zero. */ +/* If RCOND < 0, machine precision is used instead. */ + +/* RANK (output) INTEGER */ +/* The effective rank of A, i.e., the number of singular values */ +/* which are greater than RCOND*S(1). */ + +/* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The dimension of the array WORK. LWORK must be at least 1. */ +/* The exact minimum amount of workspace needed depends on M, */ +/* N and NRHS. As long as LWORK is at least */ +/* 2 * N + N * NRHS */ +/* if M is greater than or equal to N or */ +/* 2 * M + M * NRHS */ +/* if M is less than N, the code will execute correctly. */ +/* For good performance, LWORK should generally be larger. */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the optimal size of the array WORK and the */ +/* minimum sizes of the arrays RWORK and IWORK, and returns */ +/* these values as the first entries of the WORK, RWORK and */ +/* IWORK arrays, and no error message related to LWORK is issued */ +/* by XERBLA. */ + +/* RWORK (workspace) REAL array, dimension (MAX(1,LRWORK)) */ +/* LRWORK >= */ +/* 10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS + */ +/* (SMLSIZ+1)**2 */ +/* if M is greater than or equal to N or */ +/* 10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS + */ +/* (SMLSIZ+1)**2 */ +/* if M is less than N, the code will execute correctly. */ +/* SMLSIZ is returned by ILAENV and is equal to the maximum */ +/* size of the subproblems at the bottom of the computation */ +/* tree (usually about 25), and */ +/* NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) */ +/* On exit, if INFO = 0, RWORK(1) returns the minimum LRWORK. */ + +/* IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK)) */ +/* LIWORK >= max(1, 3*MINMN*NLVL + 11*MINMN), */ +/* where MINMN = MIN( M,N ). */ +/* On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ +/* > 0: the algorithm for computing the SVD failed to converge; */ +/* if INFO = i, i off-diagonal elements of an intermediate */ +/* bidiagonal form did not converge to zero. */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* Ming Gu and Ren-Cang Li, Computer Science Division, University of */ +/* California at Berkeley, USA */ +/* Osni Marques, LBNL/NERSC, USA */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input arguments. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + --s; + --work; + --rwork; + --iwork; + + /* Function Body */ + *info = 0; + minmn = min(*m,*n); + maxmn = max(*m,*n); + lquery = *lwork == -1; + if (*m < 0) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*nrhs < 0) { + *info = -3; + } else if (*lda < max(1,*m)) { + *info = -5; + } else if (*ldb < max(1,maxmn)) { + *info = -7; + } + +/* Compute workspace. */ +/* (Note: Comments in the code beginning "Workspace:" describe the */ +/* minimal amount of workspace needed at that point in the code, */ +/* as well as the preferred amount for good performance. */ +/* NB refers to the optimal block size for the immediately */ +/* following subroutine, as returned by ILAENV.) */ + + if (*info == 0) { + minwrk = 1; + maxwrk = 1; + liwork = 1; + lrwork = 1; + if (minmn > 0) { + smlsiz = ilaenv_(&c__9, "CGELSD", " ", &c__0, &c__0, &c__0, &c__0); + mnthr = ilaenv_(&c__6, "CGELSD", " ", m, n, nrhs, &c_n1); +/* Computing MAX */ + i__1 = (integer) (log((real) minmn / (real) (smlsiz + 1)) / log( + 2.f)) + 1; + nlvl = max(i__1,0); + liwork = minmn * 3 * nlvl + minmn * 11; + mm = *m; + if (*m >= *n && *m >= mnthr) { + +/* Path 1a - overdetermined, with many more rows than */ +/* columns. */ + + mm = *n; +/* Computing MAX */ + i__1 = maxwrk, i__2 = *n * ilaenv_(&c__1, "CGEQRF", " ", m, n, + &c_n1, &c_n1); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = *nrhs * ilaenv_(&c__1, "CUNMQR", "LC", + m, nrhs, n, &c_n1); + maxwrk = max(i__1,i__2); + } + if (*m >= *n) { + +/* Path 1 - overdetermined or exactly determined. */ + +/* Computing 2nd power */ + i__1 = smlsiz + 1; + lrwork = *n * 10 + (*n << 1) * smlsiz + (*n << 3) * nlvl + + smlsiz * 3 * *nrhs + i__1 * i__1; +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*n << 1) + (mm + *n) * ilaenv_(&c__1, + "CGEBRD", " ", &mm, n, &c_n1, &c_n1); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*n << 1) + *nrhs * ilaenv_(&c__1, + "CUNMBR", "QLC", &mm, nrhs, n, &c_n1); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1, + "CUNMBR", "PLN", n, nrhs, n, &c_n1); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*n << 1) + *n * *nrhs; + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = (*n << 1) + mm, i__2 = (*n << 1) + *n * *nrhs; + minwrk = max(i__1,i__2); + } + if (*n > *m) { +/* Computing 2nd power */ + i__1 = smlsiz + 1; + lrwork = *m * 10 + (*m << 1) * smlsiz + (*m << 3) * nlvl + + smlsiz * 3 * *nrhs + i__1 * i__1; + if (*n >= mnthr) { + +/* Path 2a - underdetermined, with many more columns */ +/* than rows. */ + + maxwrk = *m + *m * ilaenv_(&c__1, "CGELQF", " ", m, n, & + c_n1, &c_n1); +/* Computing MAX */ + i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m << 1) * + ilaenv_(&c__1, "CGEBRD", " ", m, m, &c_n1, &c_n1); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *nrhs * + ilaenv_(&c__1, "CUNMBR", "QLC", m, nrhs, m, &c_n1); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m - 1) * + ilaenv_(&c__1, "CUNMLQ", "LC", n, nrhs, m, &c_n1); + maxwrk = max(i__1,i__2); + if (*nrhs > 1) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs; + maxwrk = max(i__1,i__2); + } else { +/* Computing MAX */ + i__1 = maxwrk, i__2 = *m * *m + (*m << 1); + maxwrk = max(i__1,i__2); + } +/* Computing MAX */ + i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *m * *nrhs; + maxwrk = max(i__1,i__2); +/* XXX: Ensure the Path 2a case below is triggered. The workspace */ +/* calculation should use queries for all routines eventually. */ +/* Computing MAX */ +/* Computing MAX */ + i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4), + i__3 = max(i__3,*nrhs), i__4 = *n - *m * 3; + i__1 = maxwrk, i__2 = (*m << 2) + *m * *m + max(i__3,i__4) + ; + maxwrk = max(i__1,i__2); + } else { + +/* Path 2 - underdetermined. */ + + maxwrk = (*m << 1) + (*n + *m) * ilaenv_(&c__1, "CGEBRD", + " ", m, n, &c_n1, &c_n1); +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*m << 1) + *nrhs * ilaenv_(&c__1, + "CUNMBR", "QLC", m, nrhs, m, &c_n1); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1, + "CUNMBR", "PLN", n, nrhs, m, &c_n1); + maxwrk = max(i__1,i__2); +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*m << 1) + *m * *nrhs; + maxwrk = max(i__1,i__2); + } +/* Computing MAX */ + i__1 = (*m << 1) + *n, i__2 = (*m << 1) + *m * *nrhs; + minwrk = max(i__1,i__2); + } + } + minwrk = min(minwrk,maxwrk); + work[1].r = (real) maxwrk, work[1].i = 0.f; + iwork[1] = liwork; + rwork[1] = (real) lrwork; + + if (*lwork < minwrk && ! lquery) { + *info = -12; + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGELSD", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible. */ + + if (*m == 0 || *n == 0) { + *rank = 0; + return 0; + } + +/* Get machine parameters. */ + + eps = slamch_("P"); + sfmin = slamch_("S"); + smlnum = sfmin / eps; + bignum = 1.f / smlnum; + slabad_(&smlnum, &bignum); + +/* Scale A if max entry outside range [SMLNUM,BIGNUM]. */ + + anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]); + iascl = 0; + if (anrm > 0.f && anrm < smlnum) { + +/* Scale matrix norm up to SMLNUM */ + + clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, + info); + iascl = 1; + } else if (anrm > bignum) { + +/* Scale matrix norm down to BIGNUM. */ + + clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, + info); + iascl = 2; + } else if (anrm == 0.f) { + +/* Matrix all zero. Return zero solution. */ + + i__1 = max(*m,*n); + claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb); + slaset_("F", &minmn, &c__1, &c_b80, &c_b80, &s[1], &c__1); + *rank = 0; + goto L10; + } + +/* Scale B if max entry outside range [SMLNUM,BIGNUM]. */ + + bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]); + ibscl = 0; + if (bnrm > 0.f && bnrm < smlnum) { + +/* Scale matrix norm up to SMLNUM. */ + + clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb, + info); + ibscl = 1; + } else if (bnrm > bignum) { + +/* Scale matrix norm down to BIGNUM. */ + + clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb, + info); + ibscl = 2; + } + +/* If M < N make sure B(M+1:N,:) = 0 */ + + if (*m < *n) { + i__1 = *n - *m; + claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb); + } + +/* Overdetermined case. */ + + if (*m >= *n) { + +/* Path 1 - overdetermined or exactly determined. */ + + mm = *m; + if (*m >= mnthr) { + +/* Path 1a - overdetermined, with many more rows than columns */ + + mm = *n; + itau = 1; + nwork = itau + *n; + +/* Compute A=Q*R. */ +/* (RWorkspace: need N) */ +/* (CWorkspace: need N, prefer N*NB) */ + + i__1 = *lwork - nwork + 1; + cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1, + info); + +/* Multiply B by transpose(Q). */ +/* (RWorkspace: need N) */ +/* (CWorkspace: need NRHS, prefer NRHS*NB) */ + + i__1 = *lwork - nwork + 1; + cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[ + b_offset], ldb, &work[nwork], &i__1, info); + +/* Zero out below R. */ + + if (*n > 1) { + i__1 = *n - 1; + i__2 = *n - 1; + claset_("L", &i__1, &i__2, &c_b1, &c_b1, &a[a_dim1 + 2], lda); + } + } + + itauq = 1; + itaup = itauq + *n; + nwork = itaup + *n; + ie = 1; + nrwork = ie + *n; + +/* Bidiagonalize R in A. */ +/* (RWorkspace: need N) */ +/* (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */ + + i__1 = *lwork - nwork + 1; + cgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], & + work[itaup], &work[nwork], &i__1, info); + +/* Multiply B by transpose of left bidiagonalizing vectors of R. */ +/* (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */ + + i__1 = *lwork - nwork + 1; + cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq], + &b[b_offset], ldb, &work[nwork], &i__1, info); + +/* Solve the bidiagonal least squares problem. */ + + clalsd_("U", &smlsiz, n, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb, + rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info); + if (*info != 0) { + goto L10; + } + +/* Multiply B by right bidiagonalizing vectors of R. */ + + i__1 = *lwork - nwork + 1; + cunmbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], & + b[b_offset], ldb, &work[nwork], &i__1, info); + + } else /* if(complicated condition) */ { +/* Computing MAX */ + i__1 = *m, i__2 = (*m << 1) - 4, i__1 = max(i__1,i__2), i__1 = max( + i__1,*nrhs), i__2 = *n - *m * 3; + if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + max(i__1,i__2)) { + +/* Path 2a - underdetermined, with many more columns than rows */ +/* and sufficient workspace for an efficient algorithm. */ + + ldwork = *m; +/* Computing MAX */ +/* Computing MAX */ + i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4), i__3 = + max(i__3,*nrhs), i__4 = *n - *m * 3; + i__1 = (*m << 2) + *m * *lda + max(i__3,i__4), i__2 = *m * *lda + + *m + *m * *nrhs; + if (*lwork >= max(i__1,i__2)) { + ldwork = *lda; + } + itau = 1; + nwork = *m + 1; + +/* Compute A=L*Q. */ +/* (CWorkspace: need 2*M, prefer M+M*NB) */ + + i__1 = *lwork - nwork + 1; + cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1, + info); + il = nwork; + +/* Copy L to WORK(IL), zeroing out above its diagonal. */ + + clacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork); + i__1 = *m - 1; + i__2 = *m - 1; + claset_("U", &i__1, &i__2, &c_b1, &c_b1, &work[il + ldwork], & + ldwork); + itauq = il + ldwork * *m; + itaup = itauq + *m; + nwork = itaup + *m; + ie = 1; + nrwork = ie + *m; + +/* Bidiagonalize L in WORK(IL). */ +/* (RWorkspace: need M) */ +/* (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB) */ + + i__1 = *lwork - nwork + 1; + cgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq], + &work[itaup], &work[nwork], &i__1, info); + +/* Multiply B by transpose of left bidiagonalizing vectors of L. */ +/* (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */ + + i__1 = *lwork - nwork + 1; + cunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[ + itauq], &b[b_offset], ldb, &work[nwork], &i__1, info); + +/* Solve the bidiagonal least squares problem. */ + + clalsd_("U", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset], + ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], + info); + if (*info != 0) { + goto L10; + } + +/* Multiply B by right bidiagonalizing vectors of L. */ + + i__1 = *lwork - nwork + 1; + cunmbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[ + itaup], &b[b_offset], ldb, &work[nwork], &i__1, info); + +/* Zero out below first M rows of B. */ + + i__1 = *n - *m; + claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb); + nwork = itau + *m; + +/* Multiply transpose(Q) by B. */ +/* (CWorkspace: need NRHS, prefer NRHS*NB) */ + + i__1 = *lwork - nwork + 1; + cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[ + b_offset], ldb, &work[nwork], &i__1, info); + + } else { + +/* Path 2 - remaining underdetermined cases. */ + + itauq = 1; + itaup = itauq + *m; + nwork = itaup + *m; + ie = 1; + nrwork = ie + *m; + +/* Bidiagonalize A. */ +/* (RWorkspace: need M) */ +/* (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) */ + + i__1 = *lwork - nwork + 1; + cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], + &work[itaup], &work[nwork], &i__1, info); + +/* Multiply B by transpose of left bidiagonalizing vectors. */ +/* (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */ + + i__1 = *lwork - nwork + 1; + cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq] +, &b[b_offset], ldb, &work[nwork], &i__1, info); + +/* Solve the bidiagonal least squares problem. */ + + clalsd_("L", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset], + ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], + info); + if (*info != 0) { + goto L10; + } + +/* Multiply B by right bidiagonalizing vectors of A. */ + + i__1 = *lwork - nwork + 1; + cunmbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup] +, &b[b_offset], ldb, &work[nwork], &i__1, info); + + } + } + +/* Undo scaling. */ + + if (iascl == 1) { + clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb, + info); + slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], & + minmn, info); + } else if (iascl == 2) { + clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb, + info); + slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], & + minmn, info); + } + if (ibscl == 1) { + clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb, + info); + } else if (ibscl == 2) { + clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb, + info); + } + +L10: + work[1].r = (real) maxwrk, work[1].i = 0.f; + iwork[1] = liwork; + rwork[1] = (real) lrwork; + return 0; + +/* End of CGELSD */ + +} /* cgelsd_ */ |