aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/cgeequ.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cgeequ.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cgeequ.c')
-rw-r--r--contrib/libs/clapack/cgeequ.c306
1 files changed, 306 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cgeequ.c b/contrib/libs/clapack/cgeequ.c
new file mode 100644
index 0000000000..84cf694706
--- /dev/null
+++ b/contrib/libs/clapack/cgeequ.c
@@ -0,0 +1,306 @@
+/* cgeequ.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int cgeequ_(integer *m, integer *n, complex *a, integer *lda,
+ real *r__, real *c__, real *rowcnd, real *colcnd, real *amax,
+ integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3;
+ real r__1, r__2, r__3, r__4;
+
+ /* Builtin functions */
+ double r_imag(complex *);
+
+ /* Local variables */
+ integer i__, j;
+ real rcmin, rcmax;
+ extern doublereal slamch_(char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ real bignum, smlnum;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CGEEQU computes row and column scalings intended to equilibrate an */
+/* M-by-N matrix A and reduce its condition number. R returns the row */
+/* scale factors and C the column scale factors, chosen to try to make */
+/* the largest element in each row and column of the matrix B with */
+/* elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1. */
+
+/* R(i) and C(j) are restricted to be between SMLNUM = smallest safe */
+/* number and BIGNUM = largest safe number. Use of these scaling */
+/* factors is not guaranteed to reduce the condition number of A but */
+/* works well in practice. */
+
+/* Arguments */
+/* ========= */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix A. M >= 0. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrix A. N >= 0. */
+
+/* A (input) COMPLEX array, dimension (LDA,N) */
+/* The M-by-N matrix whose equilibration factors are */
+/* to be computed. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,M). */
+
+/* R (output) REAL array, dimension (M) */
+/* If INFO = 0 or INFO > M, R contains the row scale factors */
+/* for A. */
+
+/* C (output) REAL array, dimension (N) */
+/* If INFO = 0, C contains the column scale factors for A. */
+
+/* ROWCND (output) REAL */
+/* If INFO = 0 or INFO > M, ROWCND contains the ratio of the */
+/* smallest R(i) to the largest R(i). If ROWCND >= 0.1 and */
+/* AMAX is neither too large nor too small, it is not worth */
+/* scaling by R. */
+
+/* COLCND (output) REAL */
+/* If INFO = 0, COLCND contains the ratio of the smallest */
+/* C(i) to the largest C(i). If COLCND >= 0.1, it is not */
+/* worth scaling by C. */
+
+/* AMAX (output) REAL */
+/* Absolute value of largest matrix element. If AMAX is very */
+/* close to overflow or very close to underflow, the matrix */
+/* should be scaled. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, and i is */
+/* <= M: the i-th row of A is exactly zero */
+/* > M: the (i-M)-th column of A is exactly zero */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Statement Functions .. */
+/* .. */
+/* .. Statement Function definitions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --r__;
+ --c__;
+
+ /* Function Body */
+ *info = 0;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*m)) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CGEEQU", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0 || *n == 0) {
+ *rowcnd = 1.f;
+ *colcnd = 1.f;
+ *amax = 0.f;
+ return 0;
+ }
+
+/* Get machine constants. */
+
+ smlnum = slamch_("S");
+ bignum = 1.f / smlnum;
+
+/* Compute row scale factors. */
+
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ r__[i__] = 0.f;
+/* L10: */
+ }
+
+/* Find the maximum element in each row. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+/* Computing MAX */
+ i__3 = i__ + j * a_dim1;
+ r__3 = r__[i__], r__4 = (r__1 = a[i__3].r, dabs(r__1)) + (r__2 =
+ r_imag(&a[i__ + j * a_dim1]), dabs(r__2));
+ r__[i__] = dmax(r__3,r__4);
+/* L20: */
+ }
+/* L30: */
+ }
+
+/* Find the maximum and minimum scale factors. */
+
+ rcmin = bignum;
+ rcmax = 0.f;
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+/* Computing MAX */
+ r__1 = rcmax, r__2 = r__[i__];
+ rcmax = dmax(r__1,r__2);
+/* Computing MIN */
+ r__1 = rcmin, r__2 = r__[i__];
+ rcmin = dmin(r__1,r__2);
+/* L40: */
+ }
+ *amax = rcmax;
+
+ if (rcmin == 0.f) {
+
+/* Find the first zero scale factor and return an error code. */
+
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ if (r__[i__] == 0.f) {
+ *info = i__;
+ return 0;
+ }
+/* L50: */
+ }
+ } else {
+
+/* Invert the scale factors. */
+
+ i__1 = *m;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+/* Computing MIN */
+/* Computing MAX */
+ r__2 = r__[i__];
+ r__1 = dmax(r__2,smlnum);
+ r__[i__] = 1.f / dmin(r__1,bignum);
+/* L60: */
+ }
+
+/* Compute ROWCND = min(R(I)) / max(R(I)) */
+
+ *rowcnd = dmax(rcmin,smlnum) / dmin(rcmax,bignum);
+ }
+
+/* Compute column scale factors */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ c__[j] = 0.f;
+/* L70: */
+ }
+
+/* Find the maximum element in each column, */
+/* assuming the row scaling computed above. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+/* Computing MAX */
+ i__3 = i__ + j * a_dim1;
+ r__3 = c__[j], r__4 = ((r__1 = a[i__3].r, dabs(r__1)) + (r__2 =
+ r_imag(&a[i__ + j * a_dim1]), dabs(r__2))) * r__[i__];
+ c__[j] = dmax(r__3,r__4);
+/* L80: */
+ }
+/* L90: */
+ }
+
+/* Find the maximum and minimum scale factors. */
+
+ rcmin = bignum;
+ rcmax = 0.f;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MIN */
+ r__1 = rcmin, r__2 = c__[j];
+ rcmin = dmin(r__1,r__2);
+/* Computing MAX */
+ r__1 = rcmax, r__2 = c__[j];
+ rcmax = dmax(r__1,r__2);
+/* L100: */
+ }
+
+ if (rcmin == 0.f) {
+
+/* Find the first zero scale factor and return an error code. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (c__[j] == 0.f) {
+ *info = *m + j;
+ return 0;
+ }
+/* L110: */
+ }
+ } else {
+
+/* Invert the scale factors. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+/* Computing MIN */
+/* Computing MAX */
+ r__2 = c__[j];
+ r__1 = dmax(r__2,smlnum);
+ c__[j] = 1.f / dmin(r__1,bignum);
+/* L120: */
+ }
+
+/* Compute COLCND = min(C(J)) / max(C(J)) */
+
+ *colcnd = dmax(rcmin,smlnum) / dmin(rcmax,bignum);
+ }
+
+ return 0;
+
+/* End of CGEEQU */
+
+} /* cgeequ_ */