diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cgeequ.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cgeequ.c')
-rw-r--r-- | contrib/libs/clapack/cgeequ.c | 306 |
1 files changed, 306 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cgeequ.c b/contrib/libs/clapack/cgeequ.c new file mode 100644 index 0000000000..84cf694706 --- /dev/null +++ b/contrib/libs/clapack/cgeequ.c @@ -0,0 +1,306 @@ +/* cgeequ.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Subroutine */ int cgeequ_(integer *m, integer *n, complex *a, integer *lda, + real *r__, real *c__, real *rowcnd, real *colcnd, real *amax, + integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3; + real r__1, r__2, r__3, r__4; + + /* Builtin functions */ + double r_imag(complex *); + + /* Local variables */ + integer i__, j; + real rcmin, rcmax; + extern doublereal slamch_(char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + real bignum, smlnum; + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CGEEQU computes row and column scalings intended to equilibrate an */ +/* M-by-N matrix A and reduce its condition number. R returns the row */ +/* scale factors and C the column scale factors, chosen to try to make */ +/* the largest element in each row and column of the matrix B with */ +/* elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1. */ + +/* R(i) and C(j) are restricted to be between SMLNUM = smallest safe */ +/* number and BIGNUM = largest safe number. Use of these scaling */ +/* factors is not guaranteed to reduce the condition number of A but */ +/* works well in practice. */ + +/* Arguments */ +/* ========= */ + +/* M (input) INTEGER */ +/* The number of rows of the matrix A. M >= 0. */ + +/* N (input) INTEGER */ +/* The number of columns of the matrix A. N >= 0. */ + +/* A (input) COMPLEX array, dimension (LDA,N) */ +/* The M-by-N matrix whose equilibration factors are */ +/* to be computed. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,M). */ + +/* R (output) REAL array, dimension (M) */ +/* If INFO = 0 or INFO > M, R contains the row scale factors */ +/* for A. */ + +/* C (output) REAL array, dimension (N) */ +/* If INFO = 0, C contains the column scale factors for A. */ + +/* ROWCND (output) REAL */ +/* If INFO = 0 or INFO > M, ROWCND contains the ratio of the */ +/* smallest R(i) to the largest R(i). If ROWCND >= 0.1 and */ +/* AMAX is neither too large nor too small, it is not worth */ +/* scaling by R. */ + +/* COLCND (output) REAL */ +/* If INFO = 0, COLCND contains the ratio of the smallest */ +/* C(i) to the largest C(i). If COLCND >= 0.1, it is not */ +/* worth scaling by C. */ + +/* AMAX (output) REAL */ +/* Absolute value of largest matrix element. If AMAX is very */ +/* close to overflow or very close to underflow, the matrix */ +/* should be scaled. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: if INFO = i, and i is */ +/* <= M: the i-th row of A is exactly zero */ +/* > M: the (i-M)-th column of A is exactly zero */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Statement Functions .. */ +/* .. */ +/* .. Statement Function definitions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --r__; + --c__; + + /* Function Body */ + *info = 0; + if (*m < 0) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*m)) { + *info = -4; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGEEQU", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*m == 0 || *n == 0) { + *rowcnd = 1.f; + *colcnd = 1.f; + *amax = 0.f; + return 0; + } + +/* Get machine constants. */ + + smlnum = slamch_("S"); + bignum = 1.f / smlnum; + +/* Compute row scale factors. */ + + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + r__[i__] = 0.f; +/* L10: */ + } + +/* Find the maximum element in each row. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { +/* Computing MAX */ + i__3 = i__ + j * a_dim1; + r__3 = r__[i__], r__4 = (r__1 = a[i__3].r, dabs(r__1)) + (r__2 = + r_imag(&a[i__ + j * a_dim1]), dabs(r__2)); + r__[i__] = dmax(r__3,r__4); +/* L20: */ + } +/* L30: */ + } + +/* Find the maximum and minimum scale factors. */ + + rcmin = bignum; + rcmax = 0.f; + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { +/* Computing MAX */ + r__1 = rcmax, r__2 = r__[i__]; + rcmax = dmax(r__1,r__2); +/* Computing MIN */ + r__1 = rcmin, r__2 = r__[i__]; + rcmin = dmin(r__1,r__2); +/* L40: */ + } + *amax = rcmax; + + if (rcmin == 0.f) { + +/* Find the first zero scale factor and return an error code. */ + + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + if (r__[i__] == 0.f) { + *info = i__; + return 0; + } +/* L50: */ + } + } else { + +/* Invert the scale factors. */ + + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { +/* Computing MIN */ +/* Computing MAX */ + r__2 = r__[i__]; + r__1 = dmax(r__2,smlnum); + r__[i__] = 1.f / dmin(r__1,bignum); +/* L60: */ + } + +/* Compute ROWCND = min(R(I)) / max(R(I)) */ + + *rowcnd = dmax(rcmin,smlnum) / dmin(rcmax,bignum); + } + +/* Compute column scale factors */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + c__[j] = 0.f; +/* L70: */ + } + +/* Find the maximum element in each column, */ +/* assuming the row scaling computed above. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { +/* Computing MAX */ + i__3 = i__ + j * a_dim1; + r__3 = c__[j], r__4 = ((r__1 = a[i__3].r, dabs(r__1)) + (r__2 = + r_imag(&a[i__ + j * a_dim1]), dabs(r__2))) * r__[i__]; + c__[j] = dmax(r__3,r__4); +/* L80: */ + } +/* L90: */ + } + +/* Find the maximum and minimum scale factors. */ + + rcmin = bignum; + rcmax = 0.f; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MIN */ + r__1 = rcmin, r__2 = c__[j]; + rcmin = dmin(r__1,r__2); +/* Computing MAX */ + r__1 = rcmax, r__2 = c__[j]; + rcmax = dmax(r__1,r__2); +/* L100: */ + } + + if (rcmin == 0.f) { + +/* Find the first zero scale factor and return an error code. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (c__[j] == 0.f) { + *info = *m + j; + return 0; + } +/* L110: */ + } + } else { + +/* Invert the scale factors. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MIN */ +/* Computing MAX */ + r__2 = c__[j]; + r__1 = dmax(r__2,smlnum); + c__[j] = 1.f / dmin(r__1,bignum); +/* L120: */ + } + +/* Compute COLCND = min(C(J)) / max(C(J)) */ + + *colcnd = dmax(rcmin,smlnum) / dmin(rcmax,bignum); + } + + return 0; + +/* End of CGEEQU */ + +} /* cgeequ_ */ |