aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/cgbtf2.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cgbtf2.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cgbtf2.c')
-rw-r--r--contrib/libs/clapack/cgbtf2.c267
1 files changed, 267 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cgbtf2.c b/contrib/libs/clapack/cgbtf2.c
new file mode 100644
index 0000000000..ddf5cf55c1
--- /dev/null
+++ b/contrib/libs/clapack/cgbtf2.c
@@ -0,0 +1,267 @@
+/* cgbtf2.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static complex c_b1 = {1.f,0.f};
+static integer c__1 = 1;
+
+/* Subroutine */ int cgbtf2_(integer *m, integer *n, integer *kl, integer *ku,
+ complex *ab, integer *ldab, integer *ipiv, integer *info)
+{
+ /* System generated locals */
+ integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
+ complex q__1;
+
+ /* Builtin functions */
+ void c_div(complex *, complex *, complex *);
+
+ /* Local variables */
+ integer i__, j, km, jp, ju, kv;
+ extern /* Subroutine */ int cscal_(integer *, complex *, complex *,
+ integer *), cgeru_(integer *, integer *, complex *, complex *,
+ integer *, complex *, integer *, complex *, integer *), cswap_(
+ integer *, complex *, integer *, complex *, integer *);
+ extern integer icamax_(integer *, complex *, integer *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CGBTF2 computes an LU factorization of a complex m-by-n band matrix */
+/* A using partial pivoting with row interchanges. */
+
+/* This is the unblocked version of the algorithm, calling Level 2 BLAS. */
+
+/* Arguments */
+/* ========= */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix A. M >= 0. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrix A. N >= 0. */
+
+/* KL (input) INTEGER */
+/* The number of subdiagonals within the band of A. KL >= 0. */
+
+/* KU (input) INTEGER */
+/* The number of superdiagonals within the band of A. KU >= 0. */
+
+/* AB (input/output) COMPLEX array, dimension (LDAB,N) */
+/* On entry, the matrix A in band storage, in rows KL+1 to */
+/* 2*KL+KU+1; rows 1 to KL of the array need not be set. */
+/* The j-th column of A is stored in the j-th column of the */
+/* array AB as follows: */
+/* AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl) */
+
+/* On exit, details of the factorization: U is stored as an */
+/* upper triangular band matrix with KL+KU superdiagonals in */
+/* rows 1 to KL+KU+1, and the multipliers used during the */
+/* factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */
+/* See below for further details. */
+
+/* LDAB (input) INTEGER */
+/* The leading dimension of the array AB. LDAB >= 2*KL+KU+1. */
+
+/* IPIV (output) INTEGER array, dimension (min(M,N)) */
+/* The pivot indices; for 1 <= i <= min(M,N), row i of the */
+/* matrix was interchanged with row IPIV(i). */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = +i, U(i,i) is exactly zero. The factorization */
+/* has been completed, but the factor U is exactly */
+/* singular, and division by zero will occur if it is used */
+/* to solve a system of equations. */
+
+/* Further Details */
+/* =============== */
+
+/* The band storage scheme is illustrated by the following example, when */
+/* M = N = 6, KL = 2, KU = 1: */
+
+/* On entry: On exit: */
+
+/* * * * + + + * * * u14 u25 u36 */
+/* * * + + + + * * u13 u24 u35 u46 */
+/* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */
+/* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */
+/* a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * */
+/* a31 a42 a53 a64 * * m31 m42 m53 m64 * * */
+
+/* Array elements marked * are not used by the routine; elements marked */
+/* + need not be set on entry, but are required by the routine to store */
+/* elements of U, because of fill-in resulting from the row */
+/* interchanges. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* KV is the number of superdiagonals in the factor U, allowing for */
+/* fill-in. */
+
+ /* Parameter adjustments */
+ ab_dim1 = *ldab;
+ ab_offset = 1 + ab_dim1;
+ ab -= ab_offset;
+ --ipiv;
+
+ /* Function Body */
+ kv = *ku + *kl;
+
+/* Test the input parameters. */
+
+ *info = 0;
+ if (*m < 0) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*kl < 0) {
+ *info = -3;
+ } else if (*ku < 0) {
+ *info = -4;
+ } else if (*ldab < *kl + kv + 1) {
+ *info = -6;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CGBTF2", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0 || *n == 0) {
+ return 0;
+ }
+
+/* Gaussian elimination with partial pivoting */
+
+/* Set fill-in elements in columns KU+2 to KV to zero. */
+
+ i__1 = min(kv,*n);
+ for (j = *ku + 2; j <= i__1; ++j) {
+ i__2 = *kl;
+ for (i__ = kv - j + 2; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * ab_dim1;
+ ab[i__3].r = 0.f, ab[i__3].i = 0.f;
+/* L10: */
+ }
+/* L20: */
+ }
+
+/* JU is the index of the last column affected by the current stage */
+/* of the factorization. */
+
+ ju = 1;
+
+ i__1 = min(*m,*n);
+ for (j = 1; j <= i__1; ++j) {
+
+/* Set fill-in elements in column J+KV to zero. */
+
+ if (j + kv <= *n) {
+ i__2 = *kl;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + (j + kv) * ab_dim1;
+ ab[i__3].r = 0.f, ab[i__3].i = 0.f;
+/* L30: */
+ }
+ }
+
+/* Find pivot and test for singularity. KM is the number of */
+/* subdiagonal elements in the current column. */
+
+/* Computing MIN */
+ i__2 = *kl, i__3 = *m - j;
+ km = min(i__2,i__3);
+ i__2 = km + 1;
+ jp = icamax_(&i__2, &ab[kv + 1 + j * ab_dim1], &c__1);
+ ipiv[j] = jp + j - 1;
+ i__2 = kv + jp + j * ab_dim1;
+ if (ab[i__2].r != 0.f || ab[i__2].i != 0.f) {
+/* Computing MAX */
+/* Computing MIN */
+ i__4 = j + *ku + jp - 1;
+ i__2 = ju, i__3 = min(i__4,*n);
+ ju = max(i__2,i__3);
+
+/* Apply interchange to columns J to JU. */
+
+ if (jp != 1) {
+ i__2 = ju - j + 1;
+ i__3 = *ldab - 1;
+ i__4 = *ldab - 1;
+ cswap_(&i__2, &ab[kv + jp + j * ab_dim1], &i__3, &ab[kv + 1 +
+ j * ab_dim1], &i__4);
+ }
+ if (km > 0) {
+
+/* Compute multipliers. */
+
+ c_div(&q__1, &c_b1, &ab[kv + 1 + j * ab_dim1]);
+ cscal_(&km, &q__1, &ab[kv + 2 + j * ab_dim1], &c__1);
+
+/* Update trailing submatrix within the band. */
+
+ if (ju > j) {
+ i__2 = ju - j;
+ q__1.r = -1.f, q__1.i = -0.f;
+ i__3 = *ldab - 1;
+ i__4 = *ldab - 1;
+ cgeru_(&km, &i__2, &q__1, &ab[kv + 2 + j * ab_dim1], &
+ c__1, &ab[kv + (j + 1) * ab_dim1], &i__3, &ab[kv
+ + 1 + (j + 1) * ab_dim1], &i__4);
+ }
+ }
+ } else {
+
+/* If pivot is zero, set INFO to the index of the pivot */
+/* unless a zero pivot has already been found. */
+
+ if (*info == 0) {
+ *info = j;
+ }
+ }
+/* L40: */
+ }
+ return 0;
+
+/* End of CGBTF2 */
+
+} /* cgbtf2_ */