diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cgbtf2.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cgbtf2.c')
-rw-r--r-- | contrib/libs/clapack/cgbtf2.c | 267 |
1 files changed, 267 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cgbtf2.c b/contrib/libs/clapack/cgbtf2.c new file mode 100644 index 0000000000..ddf5cf55c1 --- /dev/null +++ b/contrib/libs/clapack/cgbtf2.c @@ -0,0 +1,267 @@ +/* cgbtf2.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static complex c_b1 = {1.f,0.f}; +static integer c__1 = 1; + +/* Subroutine */ int cgbtf2_(integer *m, integer *n, integer *kl, integer *ku, + complex *ab, integer *ldab, integer *ipiv, integer *info) +{ + /* System generated locals */ + integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4; + complex q__1; + + /* Builtin functions */ + void c_div(complex *, complex *, complex *); + + /* Local variables */ + integer i__, j, km, jp, ju, kv; + extern /* Subroutine */ int cscal_(integer *, complex *, complex *, + integer *), cgeru_(integer *, integer *, complex *, complex *, + integer *, complex *, integer *, complex *, integer *), cswap_( + integer *, complex *, integer *, complex *, integer *); + extern integer icamax_(integer *, complex *, integer *); + extern /* Subroutine */ int xerbla_(char *, integer *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CGBTF2 computes an LU factorization of a complex m-by-n band matrix */ +/* A using partial pivoting with row interchanges. */ + +/* This is the unblocked version of the algorithm, calling Level 2 BLAS. */ + +/* Arguments */ +/* ========= */ + +/* M (input) INTEGER */ +/* The number of rows of the matrix A. M >= 0. */ + +/* N (input) INTEGER */ +/* The number of columns of the matrix A. N >= 0. */ + +/* KL (input) INTEGER */ +/* The number of subdiagonals within the band of A. KL >= 0. */ + +/* KU (input) INTEGER */ +/* The number of superdiagonals within the band of A. KU >= 0. */ + +/* AB (input/output) COMPLEX array, dimension (LDAB,N) */ +/* On entry, the matrix A in band storage, in rows KL+1 to */ +/* 2*KL+KU+1; rows 1 to KL of the array need not be set. */ +/* The j-th column of A is stored in the j-th column of the */ +/* array AB as follows: */ +/* AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl) */ + +/* On exit, details of the factorization: U is stored as an */ +/* upper triangular band matrix with KL+KU superdiagonals in */ +/* rows 1 to KL+KU+1, and the multipliers used during the */ +/* factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */ +/* See below for further details. */ + +/* LDAB (input) INTEGER */ +/* The leading dimension of the array AB. LDAB >= 2*KL+KU+1. */ + +/* IPIV (output) INTEGER array, dimension (min(M,N)) */ +/* The pivot indices; for 1 <= i <= min(M,N), row i of the */ +/* matrix was interchanged with row IPIV(i). */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: if INFO = +i, U(i,i) is exactly zero. The factorization */ +/* has been completed, but the factor U is exactly */ +/* singular, and division by zero will occur if it is used */ +/* to solve a system of equations. */ + +/* Further Details */ +/* =============== */ + +/* The band storage scheme is illustrated by the following example, when */ +/* M = N = 6, KL = 2, KU = 1: */ + +/* On entry: On exit: */ + +/* * * * + + + * * * u14 u25 u36 */ +/* * * + + + + * * u13 u24 u35 u46 */ +/* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */ +/* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */ +/* a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * */ +/* a31 a42 a53 a64 * * m31 m42 m53 m64 * * */ + +/* Array elements marked * are not used by the routine; elements marked */ +/* + need not be set on entry, but are required by the routine to store */ +/* elements of U, because of fill-in resulting from the row */ +/* interchanges. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* KV is the number of superdiagonals in the factor U, allowing for */ +/* fill-in. */ + + /* Parameter adjustments */ + ab_dim1 = *ldab; + ab_offset = 1 + ab_dim1; + ab -= ab_offset; + --ipiv; + + /* Function Body */ + kv = *ku + *kl; + +/* Test the input parameters. */ + + *info = 0; + if (*m < 0) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*kl < 0) { + *info = -3; + } else if (*ku < 0) { + *info = -4; + } else if (*ldab < *kl + kv + 1) { + *info = -6; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("CGBTF2", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*m == 0 || *n == 0) { + return 0; + } + +/* Gaussian elimination with partial pivoting */ + +/* Set fill-in elements in columns KU+2 to KV to zero. */ + + i__1 = min(kv,*n); + for (j = *ku + 2; j <= i__1; ++j) { + i__2 = *kl; + for (i__ = kv - j + 2; i__ <= i__2; ++i__) { + i__3 = i__ + j * ab_dim1; + ab[i__3].r = 0.f, ab[i__3].i = 0.f; +/* L10: */ + } +/* L20: */ + } + +/* JU is the index of the last column affected by the current stage */ +/* of the factorization. */ + + ju = 1; + + i__1 = min(*m,*n); + for (j = 1; j <= i__1; ++j) { + +/* Set fill-in elements in column J+KV to zero. */ + + if (j + kv <= *n) { + i__2 = *kl; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + (j + kv) * ab_dim1; + ab[i__3].r = 0.f, ab[i__3].i = 0.f; +/* L30: */ + } + } + +/* Find pivot and test for singularity. KM is the number of */ +/* subdiagonal elements in the current column. */ + +/* Computing MIN */ + i__2 = *kl, i__3 = *m - j; + km = min(i__2,i__3); + i__2 = km + 1; + jp = icamax_(&i__2, &ab[kv + 1 + j * ab_dim1], &c__1); + ipiv[j] = jp + j - 1; + i__2 = kv + jp + j * ab_dim1; + if (ab[i__2].r != 0.f || ab[i__2].i != 0.f) { +/* Computing MAX */ +/* Computing MIN */ + i__4 = j + *ku + jp - 1; + i__2 = ju, i__3 = min(i__4,*n); + ju = max(i__2,i__3); + +/* Apply interchange to columns J to JU. */ + + if (jp != 1) { + i__2 = ju - j + 1; + i__3 = *ldab - 1; + i__4 = *ldab - 1; + cswap_(&i__2, &ab[kv + jp + j * ab_dim1], &i__3, &ab[kv + 1 + + j * ab_dim1], &i__4); + } + if (km > 0) { + +/* Compute multipliers. */ + + c_div(&q__1, &c_b1, &ab[kv + 1 + j * ab_dim1]); + cscal_(&km, &q__1, &ab[kv + 2 + j * ab_dim1], &c__1); + +/* Update trailing submatrix within the band. */ + + if (ju > j) { + i__2 = ju - j; + q__1.r = -1.f, q__1.i = -0.f; + i__3 = *ldab - 1; + i__4 = *ldab - 1; + cgeru_(&km, &i__2, &q__1, &ab[kv + 2 + j * ab_dim1], & + c__1, &ab[kv + (j + 1) * ab_dim1], &i__3, &ab[kv + + 1 + (j + 1) * ab_dim1], &i__4); + } + } + } else { + +/* If pivot is zero, set INFO to the index of the pivot */ +/* unless a zero pivot has already been found. */ + + if (*info == 0) { + *info = j; + } + } +/* L40: */ + } + return 0; + +/* End of CGBTF2 */ + +} /* cgbtf2_ */ |