aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/cgbbrd.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cgbbrd.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cgbbrd.c')
-rw-r--r--contrib/libs/clapack/cgbbrd.c649
1 files changed, 649 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cgbbrd.c b/contrib/libs/clapack/cgbbrd.c
new file mode 100644
index 0000000000..113b54ab59
--- /dev/null
+++ b/contrib/libs/clapack/cgbbrd.c
@@ -0,0 +1,649 @@
+/* cgbbrd.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static complex c_b1 = {0.f,0.f};
+static complex c_b2 = {1.f,0.f};
+static integer c__1 = 1;
+
+/* Subroutine */ int cgbbrd_(char *vect, integer *m, integer *n, integer *ncc,
+ integer *kl, integer *ku, complex *ab, integer *ldab, real *d__,
+ real *e, complex *q, integer *ldq, complex *pt, integer *ldpt,
+ complex *c__, integer *ldc, complex *work, real *rwork, integer *info)
+{
+ /* System generated locals */
+ integer ab_dim1, ab_offset, c_dim1, c_offset, pt_dim1, pt_offset, q_dim1,
+ q_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7;
+ complex q__1, q__2, q__3;
+
+ /* Builtin functions */
+ void r_cnjg(complex *, complex *);
+ double c_abs(complex *);
+
+ /* Local variables */
+ integer i__, j, l;
+ complex t;
+ integer j1, j2, kb;
+ complex ra, rb;
+ real rc;
+ integer kk, ml, nr, mu;
+ complex rs;
+ integer kb1, ml0, mu0, klm, kun, nrt, klu1, inca;
+ real abst;
+ extern /* Subroutine */ int crot_(integer *, complex *, integer *,
+ complex *, integer *, real *, complex *), cscal_(integer *,
+ complex *, complex *, integer *);
+ extern logical lsame_(char *, char *);
+ logical wantb, wantc;
+ integer minmn;
+ logical wantq;
+ extern /* Subroutine */ int claset_(char *, integer *, integer *, complex
+ *, complex *, complex *, integer *), clartg_(complex *,
+ complex *, real *, complex *, complex *), xerbla_(char *, integer
+ *), clargv_(integer *, complex *, integer *, complex *,
+ integer *, real *, integer *), clartv_(integer *, complex *,
+ integer *, complex *, integer *, real *, complex *, integer *);
+ logical wantpt;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CGBBRD reduces a complex general m-by-n band matrix A to real upper */
+/* bidiagonal form B by a unitary transformation: Q' * A * P = B. */
+
+/* The routine computes B, and optionally forms Q or P', or computes */
+/* Q'*C for a given matrix C. */
+
+/* Arguments */
+/* ========= */
+
+/* VECT (input) CHARACTER*1 */
+/* Specifies whether or not the matrices Q and P' are to be */
+/* formed. */
+/* = 'N': do not form Q or P'; */
+/* = 'Q': form Q only; */
+/* = 'P': form P' only; */
+/* = 'B': form both. */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix A. M >= 0. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrix A. N >= 0. */
+
+/* NCC (input) INTEGER */
+/* The number of columns of the matrix C. NCC >= 0. */
+
+/* KL (input) INTEGER */
+/* The number of subdiagonals of the matrix A. KL >= 0. */
+
+/* KU (input) INTEGER */
+/* The number of superdiagonals of the matrix A. KU >= 0. */
+
+/* AB (input/output) COMPLEX array, dimension (LDAB,N) */
+/* On entry, the m-by-n band matrix A, stored in rows 1 to */
+/* KL+KU+1. The j-th column of A is stored in the j-th column of */
+/* the array AB as follows: */
+/* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl). */
+/* On exit, A is overwritten by values generated during the */
+/* reduction. */
+
+/* LDAB (input) INTEGER */
+/* The leading dimension of the array A. LDAB >= KL+KU+1. */
+
+/* D (output) REAL array, dimension (min(M,N)) */
+/* The diagonal elements of the bidiagonal matrix B. */
+
+/* E (output) REAL array, dimension (min(M,N)-1) */
+/* The superdiagonal elements of the bidiagonal matrix B. */
+
+/* Q (output) COMPLEX array, dimension (LDQ,M) */
+/* If VECT = 'Q' or 'B', the m-by-m unitary matrix Q. */
+/* If VECT = 'N' or 'P', the array Q is not referenced. */
+
+/* LDQ (input) INTEGER */
+/* The leading dimension of the array Q. */
+/* LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise. */
+
+/* PT (output) COMPLEX array, dimension (LDPT,N) */
+/* If VECT = 'P' or 'B', the n-by-n unitary matrix P'. */
+/* If VECT = 'N' or 'Q', the array PT is not referenced. */
+
+/* LDPT (input) INTEGER */
+/* The leading dimension of the array PT. */
+/* LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise. */
+
+/* C (input/output) COMPLEX array, dimension (LDC,NCC) */
+/* On entry, an m-by-ncc matrix C. */
+/* On exit, C is overwritten by Q'*C. */
+/* C is not referenced if NCC = 0. */
+
+/* LDC (input) INTEGER */
+/* The leading dimension of the array C. */
+/* LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0. */
+
+/* WORK (workspace) COMPLEX array, dimension (max(M,N)) */
+
+/* RWORK (workspace) REAL array, dimension (max(M,N)) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit. */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters */
+
+ /* Parameter adjustments */
+ ab_dim1 = *ldab;
+ ab_offset = 1 + ab_dim1;
+ ab -= ab_offset;
+ --d__;
+ --e;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1;
+ q -= q_offset;
+ pt_dim1 = *ldpt;
+ pt_offset = 1 + pt_dim1;
+ pt -= pt_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+ --work;
+ --rwork;
+
+ /* Function Body */
+ wantb = lsame_(vect, "B");
+ wantq = lsame_(vect, "Q") || wantb;
+ wantpt = lsame_(vect, "P") || wantb;
+ wantc = *ncc > 0;
+ klu1 = *kl + *ku + 1;
+ *info = 0;
+ if (! wantq && ! wantpt && ! lsame_(vect, "N")) {
+ *info = -1;
+ } else if (*m < 0) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*ncc < 0) {
+ *info = -4;
+ } else if (*kl < 0) {
+ *info = -5;
+ } else if (*ku < 0) {
+ *info = -6;
+ } else if (*ldab < klu1) {
+ *info = -8;
+ } else if (*ldq < 1 || wantq && *ldq < max(1,*m)) {
+ *info = -12;
+ } else if (*ldpt < 1 || wantpt && *ldpt < max(1,*n)) {
+ *info = -14;
+ } else if (*ldc < 1 || wantc && *ldc < max(1,*m)) {
+ *info = -16;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CGBBRD", &i__1);
+ return 0;
+ }
+
+/* Initialize Q and P' to the unit matrix, if needed */
+
+ if (wantq) {
+ claset_("Full", m, m, &c_b1, &c_b2, &q[q_offset], ldq);
+ }
+ if (wantpt) {
+ claset_("Full", n, n, &c_b1, &c_b2, &pt[pt_offset], ldpt);
+ }
+
+/* Quick return if possible. */
+
+ if (*m == 0 || *n == 0) {
+ return 0;
+ }
+
+ minmn = min(*m,*n);
+
+ if (*kl + *ku > 1) {
+
+/* Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce */
+/* first to lower bidiagonal form and then transform to upper */
+/* bidiagonal */
+
+ if (*ku > 0) {
+ ml0 = 1;
+ mu0 = 2;
+ } else {
+ ml0 = 2;
+ mu0 = 1;
+ }
+
+/* Wherever possible, plane rotations are generated and applied in */
+/* vector operations of length NR over the index set J1:J2:KLU1. */
+
+/* The complex sines of the plane rotations are stored in WORK, */
+/* and the real cosines in RWORK. */
+
+/* Computing MIN */
+ i__1 = *m - 1;
+ klm = min(i__1,*kl);
+/* Computing MIN */
+ i__1 = *n - 1;
+ kun = min(i__1,*ku);
+ kb = klm + kun;
+ kb1 = kb + 1;
+ inca = kb1 * *ldab;
+ nr = 0;
+ j1 = klm + 2;
+ j2 = 1 - kun;
+
+ i__1 = minmn;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+
+/* Reduce i-th column and i-th row of matrix to bidiagonal form */
+
+ ml = klm + 1;
+ mu = kun + 1;
+ i__2 = kb;
+ for (kk = 1; kk <= i__2; ++kk) {
+ j1 += kb;
+ j2 += kb;
+
+/* generate plane rotations to annihilate nonzero elements */
+/* which have been created below the band */
+
+ if (nr > 0) {
+ clargv_(&nr, &ab[klu1 + (j1 - klm - 1) * ab_dim1], &inca,
+ &work[j1], &kb1, &rwork[j1], &kb1);
+ }
+
+/* apply plane rotations from the left */
+
+ i__3 = kb;
+ for (l = 1; l <= i__3; ++l) {
+ if (j2 - klm + l - 1 > *n) {
+ nrt = nr - 1;
+ } else {
+ nrt = nr;
+ }
+ if (nrt > 0) {
+ clartv_(&nrt, &ab[klu1 - l + (j1 - klm + l - 1) *
+ ab_dim1], &inca, &ab[klu1 - l + 1 + (j1 - klm
+ + l - 1) * ab_dim1], &inca, &rwork[j1], &work[
+ j1], &kb1);
+ }
+/* L10: */
+ }
+
+ if (ml > ml0) {
+ if (ml <= *m - i__ + 1) {
+
+/* generate plane rotation to annihilate a(i+ml-1,i) */
+/* within the band, and apply rotation from the left */
+
+ clartg_(&ab[*ku + ml - 1 + i__ * ab_dim1], &ab[*ku +
+ ml + i__ * ab_dim1], &rwork[i__ + ml - 1], &
+ work[i__ + ml - 1], &ra);
+ i__3 = *ku + ml - 1 + i__ * ab_dim1;
+ ab[i__3].r = ra.r, ab[i__3].i = ra.i;
+ if (i__ < *n) {
+/* Computing MIN */
+ i__4 = *ku + ml - 2, i__5 = *n - i__;
+ i__3 = min(i__4,i__5);
+ i__6 = *ldab - 1;
+ i__7 = *ldab - 1;
+ crot_(&i__3, &ab[*ku + ml - 2 + (i__ + 1) *
+ ab_dim1], &i__6, &ab[*ku + ml - 1 + (i__
+ + 1) * ab_dim1], &i__7, &rwork[i__ + ml -
+ 1], &work[i__ + ml - 1]);
+ }
+ }
+ ++nr;
+ j1 -= kb1;
+ }
+
+ if (wantq) {
+
+/* accumulate product of plane rotations in Q */
+
+ i__3 = j2;
+ i__4 = kb1;
+ for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4)
+ {
+ r_cnjg(&q__1, &work[j]);
+ crot_(m, &q[(j - 1) * q_dim1 + 1], &c__1, &q[j *
+ q_dim1 + 1], &c__1, &rwork[j], &q__1);
+/* L20: */
+ }
+ }
+
+ if (wantc) {
+
+/* apply plane rotations to C */
+
+ i__4 = j2;
+ i__3 = kb1;
+ for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3)
+ {
+ crot_(ncc, &c__[j - 1 + c_dim1], ldc, &c__[j + c_dim1]
+, ldc, &rwork[j], &work[j]);
+/* L30: */
+ }
+ }
+
+ if (j2 + kun > *n) {
+
+/* adjust J2 to keep within the bounds of the matrix */
+
+ --nr;
+ j2 -= kb1;
+ }
+
+ i__3 = j2;
+ i__4 = kb1;
+ for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
+
+/* create nonzero element a(j-1,j+ku) above the band */
+/* and store it in WORK(n+1:2*n) */
+
+ i__5 = j + kun;
+ i__6 = j;
+ i__7 = (j + kun) * ab_dim1 + 1;
+ q__1.r = work[i__6].r * ab[i__7].r - work[i__6].i * ab[
+ i__7].i, q__1.i = work[i__6].r * ab[i__7].i +
+ work[i__6].i * ab[i__7].r;
+ work[i__5].r = q__1.r, work[i__5].i = q__1.i;
+ i__5 = (j + kun) * ab_dim1 + 1;
+ i__6 = j;
+ i__7 = (j + kun) * ab_dim1 + 1;
+ q__1.r = rwork[i__6] * ab[i__7].r, q__1.i = rwork[i__6] *
+ ab[i__7].i;
+ ab[i__5].r = q__1.r, ab[i__5].i = q__1.i;
+/* L40: */
+ }
+
+/* generate plane rotations to annihilate nonzero elements */
+/* which have been generated above the band */
+
+ if (nr > 0) {
+ clargv_(&nr, &ab[(j1 + kun - 1) * ab_dim1 + 1], &inca, &
+ work[j1 + kun], &kb1, &rwork[j1 + kun], &kb1);
+ }
+
+/* apply plane rotations from the right */
+
+ i__4 = kb;
+ for (l = 1; l <= i__4; ++l) {
+ if (j2 + l - 1 > *m) {
+ nrt = nr - 1;
+ } else {
+ nrt = nr;
+ }
+ if (nrt > 0) {
+ clartv_(&nrt, &ab[l + 1 + (j1 + kun - 1) * ab_dim1], &
+ inca, &ab[l + (j1 + kun) * ab_dim1], &inca, &
+ rwork[j1 + kun], &work[j1 + kun], &kb1);
+ }
+/* L50: */
+ }
+
+ if (ml == ml0 && mu > mu0) {
+ if (mu <= *n - i__ + 1) {
+
+/* generate plane rotation to annihilate a(i,i+mu-1) */
+/* within the band, and apply rotation from the right */
+
+ clartg_(&ab[*ku - mu + 3 + (i__ + mu - 2) * ab_dim1],
+ &ab[*ku - mu + 2 + (i__ + mu - 1) * ab_dim1],
+ &rwork[i__ + mu - 1], &work[i__ + mu - 1], &
+ ra);
+ i__4 = *ku - mu + 3 + (i__ + mu - 2) * ab_dim1;
+ ab[i__4].r = ra.r, ab[i__4].i = ra.i;
+/* Computing MIN */
+ i__3 = *kl + mu - 2, i__5 = *m - i__;
+ i__4 = min(i__3,i__5);
+ crot_(&i__4, &ab[*ku - mu + 4 + (i__ + mu - 2) *
+ ab_dim1], &c__1, &ab[*ku - mu + 3 + (i__ + mu
+ - 1) * ab_dim1], &c__1, &rwork[i__ + mu - 1],
+ &work[i__ + mu - 1]);
+ }
+ ++nr;
+ j1 -= kb1;
+ }
+
+ if (wantpt) {
+
+/* accumulate product of plane rotations in P' */
+
+ i__4 = j2;
+ i__3 = kb1;
+ for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3)
+ {
+ r_cnjg(&q__1, &work[j + kun]);
+ crot_(n, &pt[j + kun - 1 + pt_dim1], ldpt, &pt[j +
+ kun + pt_dim1], ldpt, &rwork[j + kun], &q__1);
+/* L60: */
+ }
+ }
+
+ if (j2 + kb > *m) {
+
+/* adjust J2 to keep within the bounds of the matrix */
+
+ --nr;
+ j2 -= kb1;
+ }
+
+ i__3 = j2;
+ i__4 = kb1;
+ for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
+
+/* create nonzero element a(j+kl+ku,j+ku-1) below the */
+/* band and store it in WORK(1:n) */
+
+ i__5 = j + kb;
+ i__6 = j + kun;
+ i__7 = klu1 + (j + kun) * ab_dim1;
+ q__1.r = work[i__6].r * ab[i__7].r - work[i__6].i * ab[
+ i__7].i, q__1.i = work[i__6].r * ab[i__7].i +
+ work[i__6].i * ab[i__7].r;
+ work[i__5].r = q__1.r, work[i__5].i = q__1.i;
+ i__5 = klu1 + (j + kun) * ab_dim1;
+ i__6 = j + kun;
+ i__7 = klu1 + (j + kun) * ab_dim1;
+ q__1.r = rwork[i__6] * ab[i__7].r, q__1.i = rwork[i__6] *
+ ab[i__7].i;
+ ab[i__5].r = q__1.r, ab[i__5].i = q__1.i;
+/* L70: */
+ }
+
+ if (ml > ml0) {
+ --ml;
+ } else {
+ --mu;
+ }
+/* L80: */
+ }
+/* L90: */
+ }
+ }
+
+ if (*ku == 0 && *kl > 0) {
+
+/* A has been reduced to complex lower bidiagonal form */
+
+/* Transform lower bidiagonal form to upper bidiagonal by applying */
+/* plane rotations from the left, overwriting superdiagonal */
+/* elements on subdiagonal elements */
+
+/* Computing MIN */
+ i__2 = *m - 1;
+ i__1 = min(i__2,*n);
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ clartg_(&ab[i__ * ab_dim1 + 1], &ab[i__ * ab_dim1 + 2], &rc, &rs,
+ &ra);
+ i__2 = i__ * ab_dim1 + 1;
+ ab[i__2].r = ra.r, ab[i__2].i = ra.i;
+ if (i__ < *n) {
+ i__2 = i__ * ab_dim1 + 2;
+ i__4 = (i__ + 1) * ab_dim1 + 1;
+ q__1.r = rs.r * ab[i__4].r - rs.i * ab[i__4].i, q__1.i = rs.r
+ * ab[i__4].i + rs.i * ab[i__4].r;
+ ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
+ i__2 = (i__ + 1) * ab_dim1 + 1;
+ i__4 = (i__ + 1) * ab_dim1 + 1;
+ q__1.r = rc * ab[i__4].r, q__1.i = rc * ab[i__4].i;
+ ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
+ }
+ if (wantq) {
+ r_cnjg(&q__1, &rs);
+ crot_(m, &q[i__ * q_dim1 + 1], &c__1, &q[(i__ + 1) * q_dim1 +
+ 1], &c__1, &rc, &q__1);
+ }
+ if (wantc) {
+ crot_(ncc, &c__[i__ + c_dim1], ldc, &c__[i__ + 1 + c_dim1],
+ ldc, &rc, &rs);
+ }
+/* L100: */
+ }
+ } else {
+
+/* A has been reduced to complex upper bidiagonal form or is */
+/* diagonal */
+
+ if (*ku > 0 && *m < *n) {
+
+/* Annihilate a(m,m+1) by applying plane rotations from the */
+/* right */
+
+ i__1 = *ku + (*m + 1) * ab_dim1;
+ rb.r = ab[i__1].r, rb.i = ab[i__1].i;
+ for (i__ = *m; i__ >= 1; --i__) {
+ clartg_(&ab[*ku + 1 + i__ * ab_dim1], &rb, &rc, &rs, &ra);
+ i__1 = *ku + 1 + i__ * ab_dim1;
+ ab[i__1].r = ra.r, ab[i__1].i = ra.i;
+ if (i__ > 1) {
+ r_cnjg(&q__3, &rs);
+ q__2.r = -q__3.r, q__2.i = -q__3.i;
+ i__1 = *ku + i__ * ab_dim1;
+ q__1.r = q__2.r * ab[i__1].r - q__2.i * ab[i__1].i,
+ q__1.i = q__2.r * ab[i__1].i + q__2.i * ab[i__1]
+ .r;
+ rb.r = q__1.r, rb.i = q__1.i;
+ i__1 = *ku + i__ * ab_dim1;
+ i__2 = *ku + i__ * ab_dim1;
+ q__1.r = rc * ab[i__2].r, q__1.i = rc * ab[i__2].i;
+ ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
+ }
+ if (wantpt) {
+ r_cnjg(&q__1, &rs);
+ crot_(n, &pt[i__ + pt_dim1], ldpt, &pt[*m + 1 + pt_dim1],
+ ldpt, &rc, &q__1);
+ }
+/* L110: */
+ }
+ }
+ }
+
+/* Make diagonal and superdiagonal elements real, storing them in D */
+/* and E */
+
+ i__1 = *ku + 1 + ab_dim1;
+ t.r = ab[i__1].r, t.i = ab[i__1].i;
+ i__1 = minmn;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ abst = c_abs(&t);
+ d__[i__] = abst;
+ if (abst != 0.f) {
+ q__1.r = t.r / abst, q__1.i = t.i / abst;
+ t.r = q__1.r, t.i = q__1.i;
+ } else {
+ t.r = 1.f, t.i = 0.f;
+ }
+ if (wantq) {
+ cscal_(m, &t, &q[i__ * q_dim1 + 1], &c__1);
+ }
+ if (wantc) {
+ r_cnjg(&q__1, &t);
+ cscal_(ncc, &q__1, &c__[i__ + c_dim1], ldc);
+ }
+ if (i__ < minmn) {
+ if (*ku == 0 && *kl == 0) {
+ e[i__] = 0.f;
+ i__2 = (i__ + 1) * ab_dim1 + 1;
+ t.r = ab[i__2].r, t.i = ab[i__2].i;
+ } else {
+ if (*ku == 0) {
+ i__2 = i__ * ab_dim1 + 2;
+ r_cnjg(&q__2, &t);
+ q__1.r = ab[i__2].r * q__2.r - ab[i__2].i * q__2.i,
+ q__1.i = ab[i__2].r * q__2.i + ab[i__2].i *
+ q__2.r;
+ t.r = q__1.r, t.i = q__1.i;
+ } else {
+ i__2 = *ku + (i__ + 1) * ab_dim1;
+ r_cnjg(&q__2, &t);
+ q__1.r = ab[i__2].r * q__2.r - ab[i__2].i * q__2.i,
+ q__1.i = ab[i__2].r * q__2.i + ab[i__2].i *
+ q__2.r;
+ t.r = q__1.r, t.i = q__1.i;
+ }
+ abst = c_abs(&t);
+ e[i__] = abst;
+ if (abst != 0.f) {
+ q__1.r = t.r / abst, q__1.i = t.i / abst;
+ t.r = q__1.r, t.i = q__1.i;
+ } else {
+ t.r = 1.f, t.i = 0.f;
+ }
+ if (wantpt) {
+ cscal_(n, &t, &pt[i__ + 1 + pt_dim1], ldpt);
+ }
+ i__2 = *ku + 1 + (i__ + 1) * ab_dim1;
+ r_cnjg(&q__2, &t);
+ q__1.r = ab[i__2].r * q__2.r - ab[i__2].i * q__2.i, q__1.i =
+ ab[i__2].r * q__2.i + ab[i__2].i * q__2.r;
+ t.r = q__1.r, t.i = q__1.i;
+ }
+ }
+/* L120: */
+ }
+ return 0;
+
+/* End of CGBBRD */
+
+} /* cgbbrd_ */